
JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

 (Approved by AICTE, Affiliated to APJ Abdul Kalam Technological

University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(NBA Accredited)

COURSE MATERIAL

CST 332 FOUNDATIONS OF SECURITY IN COMPUTING

VISION OF THE INSTITUTION

Emerge as a centre of excellence for professional education to produce high quality engineers and

entrepreneurs for the development of the region and the Nation.

 MISSION OF THE INSTITUTION

 To become an ultimate destination for acquiring latest and advanced knowledge in the

multidisciplinary domains.

 To provide high quality education in engineering and technology through innovative teaching-

learning practices, research and consultancy, embedded with professional ethics.

 To promote intellectual curiosity and thirst for acquiring knowledge through outcome based

education.

 To have partnership with industry and reputed institutions to enhance the employability skills of

the students and pedagogical pursuits.

 To leverage technologies to solve the real life societal problems through community services.

ABOUT THE DEPARTMENT

 Established in: 2008

 Courses offered: B.Tech in Computer Science and Engineering

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To produce competent professionals with research and innovative skills, by providing them with the most

conducive environment for quality academic and research oriented undergraduate education along with

moral values committed to build a vibrant nation.

DEPARTMENT MISSION

 Provide a learning environment to develop creativity and problem solving skills in a professional

manner.

 Expose to latest technologies and tools used in the field of computer science.

 Provide a platform to explore the industries to understand the work culture and expectation of an

organization.

 Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

 Develop research interest among students which will impart a better life for the society and the

nation.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates will be able to

 Provide high-quality knowledge in computer science and engineering required for a computer

professional to identify and solve problems in various application domains.

 Persist with the ability in innovative ideas in computer support systems and transmit the

knowledge and skills for research and advanced learning.

 Manifest the motivational capabilities, and turn on a social and economic commitment to

community services.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an
engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and
engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system

components or processes that meet the specified needs with appropriate consideration for the public health and
safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the information to
provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering

and IT tools including prediction and modeling to complex engineering activities with an understanding of the
limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the

engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse

teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and design
documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one’s own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent

and life-long learning in the broadest context of technological change.

COURSE OUTCOMES

Sl No

DESCRIPTION

Blooms’

Taxonomy

Level

C312.1 Illustrate the operations and properties of algebraic structures, integer arithmetic

and modular arithmetic

LEVEL 1

C312.2 Use the concepts of prime numbers for ensuring security in computing systems

LEVEL 3

C312.3 Illustrate the concepts of Linear Congruence, Primitive Roots, Discrete Logarithms

and Elliptic Curve Arithmetic
LEVEL 4

C312.4 Understanding the concept of primitive root. LEVEL 3

C312.5
Summarize the threats and attacks related to computer and program security and

outline the key aspects of operating system and database security
LEVEL 4

PROGRAM SPECIFIC OUTCOMES (PSO)

The students will be able to

 Use fundamental knowledge of mathematics to solve problems using suitable analysis methods,

data structure and algorithms.

 Interpret the basic concepts and methods of computer systems and technical specifications to

provide accurate solutions.

 Apply theoretical and practical proficiency with a wide area of programming knowledge, design

new ideas and innovations towards research.

CO PO PSO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

Subject Code PO1 PO2 PO3
PO

4
PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CS332 .1 3 2 2 - - - - - - - - 1 - 2 3

CS332 .2 2 3 2 2 - - - - - - - 2 2 2 3

CS332 .3 3 2 2 2 - - - - - - - 1 2 2 -

CS 332 .4 3 3 - - - - - - - - - - - 2 -

CS 332 .5 3 2 - - - - - - - - - - - 2 -

 3 2 2 2 - - - - - - - - 2 2 3

Reference Materials

1

MODULE - 1

Integer arithmetic - Integer division, Divisibility, Greatest Common Divisor (GCD), Euclid's algorithm for

GCD, Extended Euclid’s algorithm, Linear Diophantine Equations. Modular arithmetic - Operations,

Properties. Algebraic structures - Groups, Rings, Fields, Finite fields, GF(p), GF (2n).

1. Divisibility and the Division Algorithm

We discuss the concept of divisibility and its properties.

If a and b are integers such that a≠0, then we say "a divides b" if there exists an integer k

such that b=k×a

•a is called a factor of b, and b is multiple of a.

• If a doesn’t divide b, we write a∤b. For example 2∣4 and 7∣63, while 5∤26

Divisibility Theorems

For integers a, b, and c it is true that

• if a | b and a | c, then a | (b + c) Example: 3 | 6 and 3 | 9, so 3 | 15.

• if a | b, then a | bc for all integers c Example: 5 | 10, so 5 | 20, 5 | 30, 5 | 40, …

• if a | b and b | c, then a | c Example: 4 | 8 and 8 | 24, so 4 | 24.

The Division Algorithm

•Let a be an integer and d a positive integer. Then there are unique integers q and r, with 0 r < d, such

that

a = dq + r.

–a is called the dividend,

–d is called the divisor,

–q is called the quotient,

–r is called the reminder.

–Example : 101 = 11 × 9 + 2

2. Greatest Common Divisor

Definition Let a and b be integers, not both zero. The largest integer d such that d | a and d | b , denoted

by gcd(a, b), is called the greatest common divisor of a and b.

–Examples

 gcd(24, 36) = 12.

gcd(17, 22) = 1.

1

MODULE - 2

Primes and Congruences: Prime Numbers and prime-power factorization, Fermat and Mersenne primes.

Primality testing and factorization. Congruences-Linear Congruences, Simultaneous linear congruences,

Chinese Remainder Theorem, Fermat’s little theorem, Wilson's theorem.

1. Prime Numbers and prime-power Factorization

 Most of the public key encryption algorithms require large prime numbers.

 Example: in the RSA scheme, the modulo is the product of two prime numbers.

 In El-Gamal, LUC, ECC, etc … large prime numbers are also required.

 The problem of finding the prime factors of large composite numbers has always been of

mathematical interest.

 With the advent of public key cryptosystems it is also of practical importance, because the security

of some of these cryptosystems, such as the Rivest-Shamir-Adelman (RSA) system, depends on the

difficulty of factoring the public keys.

 In recent years the best known integer factorisation algorithms have improved greatly, to the point

where it is now easy to factor a 60-decimal digit number, and possible to factor numbers larger

than 120 decimal digits, given the availability of enough computing power.

 A positive integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

 A composite number is a whole number greater than 1 that is not a prime number.

Example: 7 is prime. 9 is composite.

Euclid’s theorem: There is infinitely many prime numbers.

 Factors

 "Factors" are the numbers you multiply together to get another number:

 Prime Factorization

"Prime Factorization" is finding which prime numbers multiply together to make the original
number.

Example 1: What are the prime factors of 12 ?

It is best to start working from the smallest prime number, which is 2, so let's check:
12 ÷ 2 = 6

Yes, it divided exactly by 2. We have taken the first step!
But 6 is not a prime number, so we need to go further. Let's try 2 again:

6 ÷ 2 = 3
Yes, that worked also. And 3 is a prime number, so we have the answer: 12 = 2 × 2 × 3

1. Pseudoprimes and Carmichael

Pseudoprimes:

 A pseudoprime is a probable prime (an integer that shares a property common to all prime

numbers) that is not actually prime.

 Pseudoprime, a composite, or nonprime, number n that fulfills a mathematical condition that most

other composite numbers fail.

 The best-known of these numbers are the Fermat pseudoprimes.

 Fermat’s primality test, which states that for any prime number p and any integer such that p does

not divide a, and ap-1 % p = 1

For example: p=15, we select a is 4 then we get 415-1 % 15 =1. However, 15 is a composite number.

Thus, 15 is a Fermat pseudoprime to the base 4.

base Fermat pseudoprimes

2 341, 561, 645, 1105, 1387, 1729, 1905, ...

3 91, 121, 286, 671, 703, 949, 1105, 1541, 1729, ...

4 15, 85, 91, 341, 435, 451, 561, 645, 703, ...

5 4, 124, 217, 561, 781, 1541, 1729, 1891, ...

 Thus, Fermat’s primality test is a necessary but not sufficient test for primality.

 Pseudoprimes are of primary importance in public-key cryptography, which makes use of the

difficulty of factoring large numbers into their prime factors.

Carmichael Number:

 A Carmichael number will pass a Fermat primality test to every base b relatively prime to the

number, even though it is not actually prime.

 A composite number p is a Carmichael number if for all a coprime with p one has ap−1≡1(mod p).

 Example : 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633,

62745, 63973,…………

https://youtu.be/y1r1yJUYgN4?t=601

Problem:

Theorem : Every Carmichael number is odd.

Proof. If n (≥ 4) is even, then (n − 1)n−1 ≡ (−1)n−1 = −1 mod n, so is not congruent
to 1 mod n.

2. Euler’s Totient Function

Euler’s Totient function Φ (n) for an input n is the count of numbers in {1, 2, 3, …, n} that are relatively

prime to n, i.e., the numbers whose GCD (Greatest Common Divisor) with n is 1.

Φ(1) = 1

gcd(1, 1) is 1

Φ(2) = 1

gcd(1, 2) is 1, but gcd(2, 2) is 2.

Φ(3) = 2

gcd(1, 3) is 1 and gcd(2, 3) is 1

Φ(4) = 2

gcd(1, 4) is 1 and gcd(3, 4) is 1

Φ(5) = 4

gcd(1, 5) is 1, gcd(2, 5) is 1,

gcd(3, 5) is 1 and gcd(4, 5) is 1

Φ(6) = 2

gcd(1, 6) is 1 and gcd(5, 6) is 1,

The following properties of Euler totient function are sufficient to calculate it for any number:

Rule 1 : If p is a prime number, then gcd (p , q)=1 for all 1≤q<p. Therefore we have:

ϕ(p)=p−1.

Rule 2 : If p is a prime number and k≥1, then there are exactly pk/p numbers between 1

 and pk that are divisible by p. Which gives us: ϕ(pk)=pk−pk−1

Rule 3 : If a and b are relatively prime (gcd(a,b)=1), then: ϕ(ab)=ϕ(a)× ϕ(b).

Suppose the only prime divisors of n are p1, p2, ...,pk

Then ϕ(n) =

Solution:

We have ϕ (600) = ϕ (23 x 3 x 52)
 = ϕ (23) x ϕ(3) x ϕ(52)
 = (23 - 22) x (3- 1) x (52 -51)
 = 160

Solution:
We have ϕ (35) = ϕ (7 x 5)

 = ϕ (7) x ϕ (5)
 = (7- 1) x (5 - 1)
 = 24

The only prime divisors of 600 are 2, 3 and 5.

So ϕ(600) =

 = 160

https://youtu.be/BrdOP5mhhdQ?t=756

Theorem : For n≥2, ϕ(n) is an even integer

Theorem:

a) If n is an odd integer ϕ(2n)= ϕ(n)

b) If n is an even integer ϕ(2n)=2 ϕ(n)

c) ϕ(3n)=3 ϕ(n) if and only if 3|n

 ϕ(3n)=2 ϕ(n) if and only if 3⏆n

3. System of Congruences in Two variables

Solve

3x - 7y ≡ 11 (mod 13), x and y are integers

https://youtu.be/m6vbjlSYCgk?t=3

Solve

 7x +3y ≡ 10 (mod 16)
 2x +5y ≡ 9 (mod 16)

https://youtu.be/j43SNO2sJCw?t=524

4. The Group of Units, Primitive Roots

 Let n be a positive integer. A primitive root mod n is an integer g such that every integer relatively

prime to n is congruent to a power of g mod n.

 That is, the integer g is a primitive root (mod n) if for every number a relatively prime to n there is

an integer z such that a ≡ gz (mod n)

 For example : 2 is a primitive root mod 5, because for every number a relatively prime to 5, there

is an integer z such that 2z ≡ a

20 = 1, 1 (mod 5) = 1 so 20 ≡ 1

21 = 2, 2 (mod 5) = 2 so 21 ≡ 2

22 = 4, 4 (mod 5) = 4 so 22 ≡ 4

23 = 8, 8 (mod 5) = 3 so 23 ≡ 3

For every integer relatively prime to 5, there is a power of 2 that is congruent.

 If n is a positive integer, the integers between 0 and n − 1 that are coprime to n form a group, with

multiplication modulo n as the operation; it is denoted by and is called the group of units

modulo n, or the group of primitive classes modulo n.

 The set := {x ∈ Zn : gcd(x, n) = 1} is the group of units modulo n.

 For example, if n = 14 then the elements of are the congruence classes {1, 3, 5, 9, 11, 13}; there

are φ(14) = 6 of them. Here is a table of their powers modulo 14:

https://youtu.be/m6vbjlSYCgk?t=3
https://youtu.be/j43SNO2sJCw?t=524

The order of 1 is 1, the orders of 3 and 5 are 6, the orders of 9 and 11 are 3, and the order of 13 is 2.

Thus, 3 and 5 are the primitive roots modulo 14.

 For example, if n = 14 then the elements of are the congruence classes {1, 2, 4, 7, 8, 11, 13,

14}; there are φ(15) = 8 of them.

Since there is no number whose order is 8, there are no primitive roots modulo 15.

Exercise :

1. Find an element of

i) order 5 modulo 11 ii) order 4 modulo 13 iii) order 8 modulo 17 iv) order 6 modulo 19

2. Find the primitive root mod 157

 Ans:

5. Solving congruences modulo prime powers

We now turn to the task of finding the solutions to a polynomial congruence where the modulus is a

prime power. i.e.

f(x) ≡ 0 (mod pn)

The general approach (where the modulus is composite) is:

1. Solve the congruence mod p, where p is prime.

2. Solve the congruence mod pk for k ≥ 2 , where p is prime.

3. To solve the congruence mod n, let , use step 2 to solve the congruence

mod for i=1,2,…..,k then use the Chinese Remainder Theorem to put together the

solutions to get a solution mod n.

6. Traditional Cryptosystem

Cryptography is the science of secret writing with the intention of keeping the data secret. Cryptography

is classified into symmetric cryptography, asymmetric cryptography and hashing.

Private Key:

Sl. No. Private Key Public Key

In

Private

key, the

same key

(secret

key) is

used for

encrypti

on and

decrypti

on. In

this key

symmetric because the only key is copy or share by another party to decrypt the cipher text. It is faster

than the public key cryptography.

Difference between public key and private key encryption

Public Key:

In Public key, two keys are used one key is used for encryption and another key is used for decryption.

One key (public key) is used for encrypt the plain text to convert it into cipher text and another key

(private key) is used by receiver to decrypt the cipher text to read the message.

Quadratic Residues- Quadratic Congruences, The group of Quadratic residues, Legendre symbol,

Jacobi Symbol, Quadratic reciprocity.

Arithmetic Functions- Definition and examples, Perfect numbers, Mobius function and its properties,

Mobius inversion formula, The Dirichlet Products.

 Quadratic Residues

If p is a positive integer ,we say that the integer a is a quadratic residue of p , the

congruence x2 a (mod p) , 0 < x < p has a solution.

1 Private key is faster than public key. It is slower than private key.

2

In this, the same key (secret key) and

algorithm is used to encrypt and

decrypt the message.

In public key cryptography, two keys are

used, one key is used for encryption and

while the other is used for decryption.

3
In private key cryptography, the key is

kept as a secret.

In public key cryptography, one of the two

keys is kept as a secret.

4

Private key is Symmetrical because

there is only one key that is called

secret key.

Public key is Asymmetrical because there

are two types of key: private and public

key.

5
In this cryptography, sender and

receiver need to share the same key.

In this cryptography, sender and receiver

does not need to share the same key.

6
In this cryptography, the key is

private.

In this cryptography, public key can be

public and private key is private.

If the congruence x2 a (mod p) has a no solution, we say a is quadratic nonresidue of p.

Example. To determine which integer are quadratic residues of 11,

Compute the squares of the integer 1, 2, 3, …, 10.

Hence , the quadratic residues of 11 are 1, 3, 4, 5, 9 ;the integer 2,6,7,8,10 are quadratic

nonresidues of 11.

 In practice, it suffices to restrict the range to 0<x≤⌊p/2⌋, where ⌊p/2⌋ is the floor function,

because of the symmetry (p-x)2=x2 (mod p).

 If p is an odd prime , then there are exactly (p-1)/2 quadratic residues of p and (p – 1)/2

quadratic nonresidues of p among the integer 1, 2, …, p – 1

In the above example

 12 (mod 11)=1

 22 (mod 11)=4

 32 (mod 11)=9

 42 (mod 11)=5

 52 (mod11)=3

The quadratic residues of 11 are 1, 3, 4, 5, 9 ; the integer 2,6,7,8,10 are quadratic nonresidues of 11.

Exercise : To determine which integer are quadratic residues of 10,

Compute the squares of the integer 1, 2, 3, …, 9.

Find that 12 (mod 10) = 1

 22 (mod 10) = 4

 32 (mod 10) = 9

 42 (mod 10) = 6

 52 (mod 10) = 5

Hence , the quadratic residues of 10 are 1, 4, 5, 6 and 9 ;the integer 2,3,7 and 8 are quadratic

nonresidues of 10.

Exercise : Find the quadratic residues (mod 17).

We calculate that

12 ≡ 162 ≡ 1 (mod 17),

22 ≡ 152 ≡ 4 (mod 17),

32 ≡ 142 ≡ 9 (mod 17),

42 ≡ 132 ≡ 16(mod 17),

52 ≡ 122 ≡ 8 (mod 17),

62 ≡ 112 ≡ 2 (mod 17),

72 ≡ 102 ≡ 15 (mod 17) and

82 ≡ 92 ≡ 13 (mod 17)

Thus the quadratic residues of p = 17 are 1, 2, 4, 8, 9, 13, 15 and 16.

Theorem 1:

Let p be odd prime and a is an integer not divisible by p.

Then the congruence x2 a (mod p) has either no solutions or exactly two incongruent solutions

modulo p.

Proof.

If x2 a (mod p) has a solution, say x = x0,

then we can easily demonstrate that x = - x0 is second incongruent solution.

Since (-x0)2 = x0
2 a (mod p) we see that – x0 is solution.

We note that x0 ≢ –x0 (mod p), for if x0 - x0 (mod p), then we have 2x0 0 (mod p).

so it must be that either p|2 or p|x0. this is impossible since p is odd and x0
2 a (mod p)

To show that there are no more than two incogruent solutions,

Assume that x x0 and x x1 are both solutions of x2 a (mod p).

Then we have x0
2 x1

2 a (mod p) ,

So that x0
2 x1

2 = (x0 + x1) (x0 - x1) 0 (mod p)

Hence, p| (x0 +x1) or p | (x0- x1),

So that x1 - x0 (mod p) or x0 x1 (mod p).

Therefore if there is a solution of x2 a (mod p), there are exactly two incongruent solution.

Theorem 2:

If p is an odd prime , then there are exactly (p-1)/2 quadratic residues of p and (p – 1)/2

quadratic nonresidues of p among the integer 1, 2, …, p – 1

Proof.

To find all the quadratic residues of p among the integers 1, 2, …, p – 1 we compute the least

positive residues modulo p of the squares of the integers 1, 2, p – 1 .

Since there are p – 1 squares to consider and since each congruence x2 a (mod p) has either

zero or two solutions, there must be exactly (p – 1)/2 quadratic residues of p among the integer

1, 2, …, p – 1 .

The remaining p – 1 – (p – 1)/2 = (p – 1)/2 positive integers less than p – 1 are quadratic

nonresidues of p .

 Legendre symbol and Jacobi Symbol

Let p be an odd prime and a an integer not divisible by p . The Legendre symbol is defined by

Properties of Legendre Symbol

Corollary 1.

Corollary 2.

Euler's formula can be used to compute

 Example Compute

Hence, and should have a solution. Indeed,

Note : If a b (mod p), then

Jacobi Symbol : The Jacobi symbol has the same look as the Legendre symbol. The top argument can

be any integer. The bottom argument is an odd positive integer. If the odd positive integer has the

prime factorization , the Jacobi symbol is defined as follows:

Properties of Jacobi Symbol

1.

2. If is a prime, then the Jacobi symbol coincides with the Legendre symbol .

3. If , then .

4. The Jacobi symbol is multiplicative when the bottom argument is fixed, i.e. .

5. The Jacobi symbol is multiplicative when the upper argument is fixed, i.e. .

 Quadratic reciprocity

If and are distinct odd primes, then the quadratic reciprocity theorem states that the congruences

are both solvable or both unsolvable unless both p and q leave the remainder 3 when divided by 4

(2)

Corollary 1. If p and q are distinct odd primes, then

https://mathworld.wolfram.com/OddNumber.html
https://mathworld.wolfram.com/PrimeNumber.html
https://mathworld.wolfram.com/Congruence.html

Corollary 2. If p and q are distinct odd primes, then

Proof : https://www.youtube.com/watch?v=aDCMlQmE6_M

https://www.youtube.com/watch?v=aDCMlQmE6_M

Question : Determine those odd primes p for which 3 is a quadratic residue and those for which it is a non-

residue.

Refer : https://www.youtube.com/watch?v=gz3NMLNBCTo

 Mobius function

 The Möbius function μ(n) is an important multiplicative function in number theory

introduced by the German mathematician August Ferdinand Möbius (also transliterated

Moebius) in 1832.

 The Möbius function is a number theoretic function defined by

μ(p)=−1 for all primes p.

Note :

https://www.youtube.com/watch?v=gz3NMLNBCTo

Reference : https://www.youtube.com/watch?v=IE-8z2RXD7k

 Mobius inversion formula

https://www.youtube.com/watch?v=IE-8z2RXD7k

Reference : https://www.youtube.com/watch?v=khfIH1H6iUg

 The Dirichlet Product

Suppose are two arithmetic functions. Then Dirichlet product or Dirichlet convolution of f and

g , denoted (f * g) is defined as:

 .

where the sum is taken over all positive divisors d of n.

Properties

Let f,g,h be arithmetic functions. Then we have the following:

 Convolution is commutative: f * g = g * f

 It is associative: (f * g) * h = f * (g * h)

 It is distributive over addition: f * (g + h) = (f * g) + (f * h)

 It has an identity: define

 The (Dirichlet) convolution of two multiplicative functions is again multiplicative.

https://www.youtube.com/watch?v=khfIH1H6iUg

Example: Consider the identity function I(n) = n for all natural numbers n, and the constant function

1(n)=1 for all natural numbers n. Their convolution is

MODULE 4&5

The security problem in computing

1.1 The meaning of computer security

The meaning of the term computer security has evolved in recent years. Before the problem of data

security became widely publicized in the media, most people’s idea of computer security focused

on the physical machine. Traditionally, computer facilities have been physically protected for

three reasons:

• To prevent theft of or damage to the hardware

• To prevent theft of or damage to the information

• To prevent disruption of service

Computer security is security applied to computing devices such as computers and

smartphones, as well as computer networks such as private and public networks, including the

whole Internet. The field covers all the processes and mechanisms by which digital equipment,

information and services are protected from unintended or unauthorized access, change or

destruction, and are of growing importance in line with the increasing reliance on computer

systems of most societies worldwide. It includes physical security to prevent theft of equipment,

and information security to protect the data on that equipment. It is sometimes referred to as

"cyber security" or "IT security", though these terms generally do not refer to physical security

(locks and such).

Some important terms used in computer security are:

Vulnerability

Vulnerability is a weakness which allows an attacker to reduce a system's information assurance.

Vulnerability is the intersection of three elements: a system susceptibility or flaw, attacker access

to the flaw, and attacker capability to exploit the flaw. To exploit vulnerability, an attacker must

have at least one applicable tool or technique that can connect to a system weakness. In this

frame, vulnerability is also known as the attack surface.

Vulnerability management is the cyclical practice of identifying, classifying, remediating, and

mitigating vulnerabilities.This practice generally refers to software vulnerabilities in computing

systems.

Backdoors

A backdoor in a computer system, is a method of bypassing normal authentication, securing remote

access to a computer, obtaining access to plaintext, and so on, while attempting to remain

undetected.

http://en.wikipedia.org/wiki/Security
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Physical_security
http://en.wikipedia.org/wiki/Physical_security
http://en.wikipedia.org/wiki/Information_security
http://en.wikipedia.org/wiki/Backdoor_(computing)

The backdoor may take the form of an installed program (e.g., Back Orifice), or could be a

modification to an existing program or hardware device. It may also fake information about disk

and memory usage.

Denial-of-service attack

Unlike other exploits, denials of service attacks are not used to gain unauthorized access or control of

a system. They are instead designed to render it unusable. Attackers can deny service to individual

victims, such as by deliberately entering a wrong password enough consecutive times to cause the

victim account to be locked, or they may overload the capabilities of a machine or network and

block all users at once. These types of attack are, in practice, very hard to prevent, because the

behavior of whole networks needs to be analyzed, not only the behavior of small pieces of

code. Distributed denial of service (DDoS) attacks are common, where a large number of

compromised hosts (commonly referred to as "zombie computers", used as part of a botnet

with, for example; a worm, Trojan horse, or backdoor exploit to control them) are used to flood a

target system with network requests, thus attempting to render it unusable through resource

exhaustion.

Direct-access attacks

An unauthorized user gaining physical access to a computer (or part thereof) can perform many

functions, install different types of devices to compromise security, including operating system

modifications, software worms, key loggers, and covert listening devices. The attacker can also

easily download large quantities of data onto backup media, for instance CD-R/DVD-R,

tape; or portable devices such as key drives, digital cameras or digital audio players.

Another common technique is to boot an operating system contained on a CD-ROM or other

bootable media and read the data from the hard drive(s) this way. The only way to defeat this is

to encrypt the storage media and store the key separate from the system. Direct-access

attacks are the only type of threat to Standalone computers (never connect to internet),

in most cases.

Eavesdropping

Eavesdropping is the act of surreptitiously listening to a private conversation, typically between hosts

on a network. For instance, programs such as Carnivore and NarusInsight have been used by the

FBI and NSA to eavesdrop on the systems of internet service providers.

Spoofing

Spoofing of user identity describes a situation in which one person or program successfully masquerades as

another by falsifying data and thereby gaining an illegitimate advantage.

Tampering

Tampering describes an intentional modification of products in a way that would make them harmful

to the consumer.

Repudiation

Repudiation describes a situation where the authenticity of a signature is being challenged.

http://en.wikipedia.org/wiki/Back_Orifice
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Distributed_denial_of_service#Distributed_attack
http://en.wikipedia.org/wiki/Distributed_denial_of_service#Distributed_attack
http://en.wikipedia.org/wiki/Zombie_computer
http://en.wikipedia.org/wiki/Botnet
http://en.wikipedia.org/wiki/Botnet
http://en.wikipedia.org/wiki/Computer_worm
http://en.wikipedia.org/wiki/Backdoor_(computing)
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Computer_worm
http://en.wikipedia.org/wiki/Keystroke_logging
http://en.wikipedia.org/wiki/Covert_listening_device
http://en.wikipedia.org/wiki/CD-R
http://en.wikipedia.org/wiki/DVD-R
http://en.wikipedia.org/wiki/Tape_drive
http://en.wikipedia.org/wiki/Keydrive
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/CD-ROM
http://en.wikipedia.org/wiki/Harddrive
http://en.wikipedia.org/wiki/Standalone
http://en.wikipedia.org/wiki/Carnivore_(FBI)
http://en.wikipedia.org/wiki/Narus_(company)
http://en.wikipedia.org/wiki/Federal_Bureau_of_Investigation
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/Internet_service_provider
http://en.wikipedia.org/wiki/Spoofing_attack
http://en.wikipedia.org/wiki/Tampering_(crime)
http://en.wikipedia.org/wiki/Non-repudiation
http://en.wikipedia.org/wiki/Authentication

Information disclosure

Information Disclosure (Privacy breach or Data leak) describes a situation where information, thought

as secure, is released in an untrusted environment.

Elevation of privilege

Elevation of Privilege describes a situation where a person or a program want to gain elevated

privileges or access to resources that are normally restricted to him/it.

Exploits

An exploit is a piece of software, a chunk of data, or sequence of commands that takes advantage of a

software "bug" or "glitch" in order to cause unintended or unanticipated behaviour to occur on

computer software, hardware, or something electronic (usually computerized). This frequently

includes such things as gaining control of a computer system or allowing privilege escalation or a

denial of service attack. The term "exploit" generally refers to small programs designed to take

advantage of a software flaw that has been discovered, either remote or local. The code from

the exploit program is frequently reused in Trojan horses and computer viruses.

Indirect attacks

An indirect attack is an attack launched by a third-party computer. By using someone else's computer

to launch an attack, it becomes far more difficult to track down the actual attacker. There have

also been cases where attackers took advantage of public anonymizing systems, such as the tor

onion router system.

Computer crime: Computer crime refers to any crime that involves a computer and a

network.

Top 10 Cyber Crime Prevention Tips

1. Use Strong Passwords

Use different user ID / password combinations for different accounts and avoid writing them

down. Make the passwords more complicated by combining letters, numbers, special

characters (minimum 10 characters in total) and change them on a regular basis.

2. Secure your computer

o Activate your firewall

Firewalls are the first line of cyber defence; they block connections to unknown or

bogus sites and will keep out some types of viruses and hackers.

o Use anti-virus/malware software

Prevent viruses from infecting your computer by installing and regularly updating

anti-virus software.

o Block spyware attacks

Prevent spyware from infiltrating your computer by installing and updating anti-

spyware software.

http://en.wikipedia.org/wiki/Data_privacy
http://en.wikipedia.org/wiki/Data_leak
http://en.wikipedia.org/wiki/Privilege_escalation
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Glitch
http://en.wikipedia.org/wiki/Privilege_escalation
http://en.wikipedia.org/wiki/Trojan_horse_(computing)
http://en.wikipedia.org/wiki/Computer_virus
http://en.wikipedia.org/wiki/Tor_(anonymity_network)
http://en.wikipedia.org/wiki/Tor_(anonymity_network)
http://en.wikipedia.org/wiki/Computer_crime
http://en.wikipedia.org/wiki/Computer_network

A B

3. Be Social-Media Savvy

Make sure your social networking profiles (e.g. Facebook, Twitter, Youtube, MSN, etc.) are set

to private. Check your security settings. Be careful what information you post online. Once

it is on the Internet, it is there forever!

4. Secure your Mobile Devices

Be aware that your mobile device is vulnerable to viruses and hackers. Download applications from

trusted sources.

5. Install the latest operating system updates

Keep your applications and operating system (e.g. Windows, Mac, Linux) current with the latest

system updates. Turn on automatic updates to prevent potential attacks on older software.

6. Protect your Data

Use encryption for your most sensitive files such as tax returns or financial records, make

regular back-ups of all your important data, and store it in another location.

7. Secure your wireless network

Wi-Fi (wireless) networks at home are vulnerable to intrusion if they are not properly secured.

Review and modify default settings. Public Wi-Fi, a.k.a. “Hot Spots”, are also vulnerable.

Avoid conducting financial or corporate transactions on these networks.

8. Protect your e-identity

Be cautious when giving out personal information such as your name, address, phone number or

financial information on the Internet. Make sure that websites are secure (e.g. when making

online purchases) or that you’ve enabled privacy settings (e.g. when accessing/using social

networking sites).

9. Avoid being scammed

Always think before you click on a link or file of unknown origin. Don’t feel pressured by any

emails. Check the source of the message. When in doubt, verify the source. Never reply to

emails that ask you to verify your information or confirm your user ID or password.

10. Call the right person for help

Don’t panic! If you are a victim, if you encounter illegal Internet content (e.g. child exploitation)

or if you suspect a computer crime, identity theft or a commercial scam, report this to your

local police. If you need help with maintenance or software installation on your computer,

consult with your service provider or a certified computer technician.

Principle security

There are five principles of security. They are as follows:

 Confidentiality:

The principle of confidentiality specifies that only the sender and the intended recipient

should be able to access the content of the message.

C

B A

 Integrity:

The confidential information sent by A to B which is accessed by C without the permission

or knowledge of A and B.

 Authentication:

Authentication mechanism helps in establishing proof of identification.

 Non-repudiation:

 Access control:

Access control specifies and control who can access what.

 Availability:

It means that assets are accessible to authorized parties at appropriate times.

Attacks

We want our security system to make sure that no data are disclosed to unauthorized

parties.

 Data should not be modified in illegitimate ways

 Legitimate user can access the data

Types of attacks

Attacks are grouped into two types:

 Passive attacks: does not involve any modification to the contents of an original

message

 Active attacks: the contents of the original message are modified in some ways.

1.4 ELEMENTARY CRYPTOGRAPHY: SUBSTITUTION CIPHER

Encryption is the process of encoding a message so that its meaning is not obvious; decryption is the

reverse process, transforming an encrypted message back into its normal, original form.

Alternatively, the terms encode and decode or encipher and decipher are used instead of encrypt

and decrypt.That is, we say that we encode, encrypt, or encipher the original message to hide its

meaning. Then, we decode, decrypt, or decipher it to reveal the original message. A system for

encryption and decryption is called a cryptosystem.

The original form of a message is known as plaintext, and the encrypted form is called

cipher text. For convenience, we denote a plaintext message P as a sequence of individual

characters P = <p1, p2, …, pn>. Similarly, cipher text is written as C = <c1, c2, …,cm>.

Plain text

Cipher text

Cipher text

plain text Decryption

Encryption

For instance, the plaintext message "I want cookies" can be denoted as the message string

<I, ,w,a,n,t,c,o,o,k,i,e,s>. It can be transformed into cipher text<c1, c2, …,c14>, and the

encryption algorithm tells us how the transformation is done.

We use this formal notation to describe the transformations between plaintext and cipher text. For

example:

we write C = E (P) and P = D(C), where C represents the cipher text, E is the

encryption rule, P is the plaintext, and D is the decryption rule.

P = D (E(P)).

In other words, we want to be able to convert the message to protect it from an intruder, but we

also want to be able to get the original message back so that the receiver can read it properly.

The cryptosystem involves a set of rules for how to encrypt the plaintext and how to decrypt the

cipher text. The encryption and decryption rules, called algorithms, often use a device called a

key, denoted by K, so that the resulting cipher text depends on the original plaintext message, the

algorithm, and the key value. We write this dependence as C =E (K, P). Essentially, E is a set of

encryption algorithms, and the key K selects one specific algorithm from the set.

1. should be as simple as possible.

Principle 3 was formulated with hand implementation in mind: A complicated algorithm is prone to

error or likely to be forgotten. With the development and popularity of digital computers,

algorithms far too complex for hand implementation became feasible. Still, the issue of

complexity is important. People will avoid an encryption algorithm whose implementation

process severely hinders message transmission, thereby undermining security. And a complex

algorithm is more likely to be programmed incorrectly.

2. Errors in ciphering should not propagate and cause corruption of further information in the

message.

Principle 4 acknowledges that humans make errors in their use of enciphering algorithms. One error

early in the process should not throw off the entire remaining ciphertext. For example, dropping

one letter in a columnar transposition throws off the entire remaining encipherment. Unless the

receiver can guess where the letter was dropped, the remainder of the message will be

unintelligible. By contrast, reading the wrong row or column for a polyalphabetic substitution

affects only one character and remaining characters are unaffected.

3. The size of the enciphered text should be no larger than the text of the original

message.

The idea behind principle 5 is that a ciphertext that expands dramatically in size cannotpossibly carry

more information than the plaintext, yet it gives the cryptanalyst more datafrom which to infer a

pattern. Furthermore, a longer ciphertext implies more space for storage and more time to

communicate.

Properties of "Trustworthy" Encryption Systems

Commercial users have several requirements that must be satisfied when they select an encryption

algorithm. Thus, when we say that encryption is "commercial grade," or "trustworthy," we mean

that it meets these constraints:

 It is based on sound mathematics. Good cryptographic algorithms are not just
invented; they are derived from solid principles.

 It has been analyzed by competent experts and found to be sound. Even the best

cryptographic experts can think of only so many possible attacks, and the developers may

become too convinced of the strength of their own algorithm. Thus, a review by critical

outside experts is essential.

 It has stood the atest of time.a As a new algorithm gains popularity, people continue to

review both its mathematical foundations and the way it builds on those foundations.

Although a long period of successful use and analysis is not a guarantee of a good

algorithm, the flaws in many algorithms are discovered relatively soon after their release.

We can divide all the cryptography algorithms (ciphers) into two groups: symmetric key cryptography

algorithms and asymmetric cryptography algorithms. Figure shows the taxonomy.

Fig :Categories of Cryptography

1. Symmetric·Key Cryptography

In symmetric-key cryptography, the same key is used by both parties. The sender uses this key

and an encryption algorithm to encrypt data; the receiver uses the same key and the corresponding

decryption algorithm to decrypt the data.

Fig :Symmetric-key Cryptography

2. Asymmetric-Key Cryptography:

In asymmetric or public-key cryptography, there are two keys: a private key and a public key. The
private key is kept by the receiver. The public key is announced to the public.

CRYPTOGRAPHY

SYMMETRIC -KEY ASYMMETRIC-KEY

Fig 7:Asymmetric-key Cryptography

1.5 PRIVATE KEY CRYPTO SYSTEM

Symmetric encryption (also called private-key encryption or secret-key encryption) involves using the

same key for encryption and decryption.

Encryption involves applying an operation (an algorithm) to the data to be encrypted using the

private key to make them unintelligible. The slightest algorithm (such as an exclusive OR) can

make the system nearly tamper proof (there being so such thing as absolute security).

However, in the 1940s, Claude Shannon proved that to be completely secure, private-key systems

need to use keys that are at least as long as the message to be encrypted. Moreover, symmetric

encryption requires that a secure channel be used to exchange the key, which seriously diminishes

the usefulness of this kind of encryption system.

The main disadvantage of a secret-key cryptosystem is related to the exchange of keys. Symmetric

encryption is based on the exchange of a secret (keys). The problem of key distribution therefore

arises:

Moreover, a user wanting to communicate with several people while ensuring separate confidentiality

levels has to use as many private keys as there are people. For a group of N people using a

secret-key cryptosystem, it is necessary to distribute a number of keys equal to N * (N-1) / 2.

In the 1920s, Gilbert Vernam and Joseph Mauborgne developed the One-Time Pad method

(sometimes called "One-Time Password" and abbreviated OTP), based on a randomly generated

private key that is used only once and is then destroyed. During the same period, the Kremlin and

the White House were connected by the famous red telephone, that is, a

telephone where calls were encrypted thanks to a private key according tothe one-time pad

method. The private key was exchanged thanks to the diplomatic bag (playing the role ofsecure

channel).

An important distinction in symmetric cryptographic algorithms is between stream and block ciphers.

Stream cipher: Stream ciphers convert one symbol of plaintext directly into a symbol of ciphertext.

Advantages:

 Speed of transformation: algorithms are linear in time and constant in space.

 Low error propogation: an error in encrypting one symbol likely will not affect subsequent

symbols.

Disadvantages:

 Low diffusion: all information of a plaintext symbol is contained in a single ciphertext symbol.

 Susceptibility to insertions/ modifications: an active interceptor who breaks the

algorithm might insert spurious text that looks authentic.

Block ciphers: It encrypt a group of plaintext symbols as one block.

Advantages:

 High diffusion: information from one plaintext symbol is diffused into several ciphertext

symbols.

 Immunity to tampering: difficult to insert symbols without detection.

Disadvantages:

 Slowness of encryption: an entire block must be accumulated before encryption /

decryption can begin.

 Error propagation: An error in one symbol may corrupt the entire block.

Simple substitution is an example of a stream cipher. Columnar transposition is a block cipher.

PROGRAM SECURITY

2.1 SECURE PROGRAM

Consider what we mean when we say that a program is "secure." We know thatsecurity implies some

degree of trust that the program enforces expected confidentiality, integrity, and availability. From

the point of view of a program or a programmer, how can we look at a software component or

code fragment and assess its security? This question is, of course, similar to the problem of

assessing software quality in general. One way to assess security or quality is to ask people to

name the characteristics of software that contribute to its overall security. However, we are likely

to get different answers from different people. This difference occurs because the importance of

the characteristics depends on who is analysing the software. For example, one person may decide

that code is secure because it takes too long to break through its security controls. And someone

else may decide code is secure if it has run for a period of time with no apparent failures. But a

third person may decide that any potential fault in meeting security requirements makes code

insecure.

Early work in computer security was based on the paradigm of "penetrate and patch," inwhich

analysts searched for and repaired faults. Often, a top-quality "tiger team" would be convened to

test a system's security by attempting to cause it to fail. The test was considered to be a "proof" of

security; if the system withstood the attacks, it was considered secure.Unfortunately, far too often

the proof became a counterexample, in which not just one but several serious security problems

were uncovered. The problem discovery in turn led to a rapid effort to "patch" the system to repair

or restore the security. However, the patch efforts were largely useless, making the system less

secure rather than more secure because they frequently introduced new faults. There are at least

four reasons why.

1. The pressure to repair a specific problem encouraged a narrow focus on the fault itself and not on its

context. In particular, the analysts paid attention to the immediate cause of the failure and not to the

underlying design or requirements faults.

2. The fault often had nonobvious side effects in places other than the immediate area of the fault.

3. Fixing one problem often caused a failure somewhere else, or the patch addressed the problem in

only one place, not in other related places.

4. The fault could not be fixed properly because system functionality or performance would suffer as a

consequence.

The inadequacies of penetrate-and-patch led researchers to seek a better way to be confident that code

meets its security requirements. One way to do that is to compare the requirements with the

behavior. That is, to understand program security, we can examine programs to see whether they

behave as their designers intended or users expected. We call such unexpected behavior a

program security flaw; it is inappropriate program behaviour caused by a program vulnerability.

Program security flaws can derive from any kind of software fault. That is, they cover

everything from a misunderstanding of program requirements to a one-character error in coding

or even typing. The flaws can result from problems in a single code component or fromthe

failure of several programs or program pieces to interact compatibly through a shared

interface. The security flaws can reflect code that was intentionally designed or coded

to be malicious or code that was simply developed in a sloppy or misguided way. Thus, it makes sense

to divide program flaws into two separate logical categories: inadvertent human errors versus

malicious, intentionally induced flaws.

Types of Flaws

To aid our understanding of the problems and their prevention or correction, we can define categories

that distinguish one kind of problem from another. For example, Landwehr et al. present a

taxonomy of program flaws, dividing them first into intentional and

inadvertent flaws. They further divide intentional flaws into malicious and nonmalicious ones.

In the taxonomy, the inadvertent flaws fall into six categories:

 validation error (incomplete or inconsistent): permission checks

 domain error: controlled access to data

 serialization and aliasing: program flow order

 inadequate identification and authentication: basis for authorization

 boundary condition violation: failure on first or last case

 other exploitable logic errors

2.2. NON MALICIOUS PROGRAM ERRORS

Being human, programmers and other developers make many mistakes, most of which are

unintentional andnonmalicious. Many such errors cause program malfunctions but do not lead to

more serious security vulnerabilities. However, a few classes of errors have plagued programmers

and security professionals for decades, and there is no reason to believe they will disappear. In

this section we consider three classic error types that have enabled many recent security breaches.

We explain each type, why it is relevant to security, and how it can be prevented or mitigated.

Buffer Overflows

A buffer overflow is the computing equivalent of trying to pour two liters of water into a one- liter

pitcher: Some water is going to spill out and make a mess. And in computing, what a mess these

errors have made!

Definition

A buffer (or array or string) is a space in which data can be held. A buffer resides in memory. Because

memory is finite, a buffer's capacity is finite. For this reason, in many programming languages the

programmer must declare the buffer's maximum size so that the compiler can set aside that

amount of space.

Let us look at an example to see how buffer overflows can happen. Suppose a C language program

contains the declaration:

char sample[10];

The compiler sets aside 10 bytes to store this buffer, one byte for each of the ten elements of the array,

sample[0] through sample[9]. Now we execute the statement:

sample[10] = 'A';

The subscript is out of bounds (that is, it does not fall between 0 and 9), so we have a problem.The

nicest outcome (from a security perspective) is for the compiler to detect the problem and mark

the error during compilation. However, if the statement were

sample[i] = 'A';

we could not identify the problem until i was set during execution to a too-big subscript. It would be

useful if, during execution, the system produced an error message warning of a subscript out of

bounds. Unfortunately, in some languages, buffer sizes do not have to be predefined, so there is

no way to detect an out-of-bounds error. More importantly, the code needed to check each

subscript against its potential maximum value takes time and space during execution, and the

resources are applied to catch a problem that occurs relatively infrequently. Even if the compiler

were careful in analyzing the buffer declaration and use, this same problem can be caused with

pointers, for which there is no reasonable way to define a proper limit. Thus, some compilers do

not generate the code to check for exceeding bounds. Let us examine this problem more closely. It

is important to recognize that the potential overflow causes a serious problem only in some

instances. The problem's occurrence depends on what is adjacent to the array sample. For

example, suppose each of the ten elements of the array sample is filled with the letter A and the

erroneous reference uses the letter B, as follows:

for (i=0; i<=9; i++) sample[i] = 'A'; sample[10] = 'B'

All program and data elements are in memory during execution, sharing space with the operating

system, other code, and resident routines. So there are four cases to consider in deciding where the

'B' goes. If the extra character overflows into the user's data space, it simply overwrites an

existing variable value (or it may be written into an as-yet unused location), perhaps affecting the

program's result, but affecting no other program or data.

3.3 VIRUS AND OTHER MALICIOUS CODE

By themselves, programs are seldom security threats. The programs operate on data, taking action

only when data and state changes trigger it. Much of the work done by a program is invisible to

users, so they are not likely to be aware of any malicious activity. For instance, when was the last

time you saw a bit? Do you know in what form a document file is stored? If you know a

document resides somewhere on a disk, can you find it? Can you tell if a game program does

anything in addition to its expected interaction with you? Which files are modified by a word

processor when you create a document? Most users cannot answer these questions. However,

since computer data are not usually seen directly by users, malicious people can make programs

serve as vehicles to access and change data and other programs. Let us look at the possible effects

of malicious code and then examine in detail several kinds of programs that can be used for

interception or modification of data.

Why Worry About Malicious Code?

None of us likes the unexpected, especially in our programs. Malicious code behaves in unexpected

ways, thanks to a malicious programmer's intention. We think of the malicious code as lurking

inside our system: all or some of a program that we are running or even a nasty part of a separate

program that somehow attaches itself to another (good) program.

Malicious Code Can Do Much (Harm)

Malicious code can do anything any other program can, such as writing a message on a computer

screen, stopping a running program, generating a sound, or erasing a stored file. Or malicious

code can do nothing at all right now; it can be planted to lie dormant, undetected, until some event

triggers the code to act. The trigger can be a time or date, an interval (for example, after 30

minutes), an event (for example, when a particular program is executed), a condition (for

example, when communication occurs on a modem), a count (for example, the fifth time

something happens), some combination of these, or a random situation. In fact, malicious code

can do different things each time, or nothing most of the time with something dramatic on

occasion. In general, malicious code can act with all the predictability of a two- year-old child:

We know in general what two-year-olds do, we may even know what a specific two-year-old

often does in certain situations, but two-year-olds have an amazing capacity to do the unexpected.

Malicious code runs under the user's authority. Thus, malicious code can touch everything the user can

touch, and in the same ways. Users typically have complete control over their own program code

and data files; they can read, write, modify, append, and even delete them. And well they should.

But malicious code can do the same, without the user's permission or even knowledge.

Malicious Code Has Been Around a Long Time

The popular literature and press continue to highlight the effects of malicious code as if it were a

relatively recent phenomenon. It is not. Cohen [COH84] is sometimes credited with the discovery

of viruses, but in fact Cohen gave a name to a phenomenon known long before. For example,

Thompson, in his 1984 Turing Award lecture, "Reflections on Trusting Trust" [THO84],

described code that can be passed by a compiler. In that lecture, he refers to an earlier Air Force

document, the Multics security evaluation [KAR74, KAR02]. In fact, references to virus behavior

go back at least to 1970. Ware's 1970 study (publicly released in 1979 [WAR79]) and Anderson's

planning study for the U.S. Air Force [AND72] (to which Schell also refers) still accurately

describe threats, vulnerabilities, and program security flaws, especially intentional ones. What is

new about malicious code is the number of distinct instances and copies that have appeared.

So malicious code is still around, and its effects are more pervasive. It is important for us to learn

what it looks like and how it works, so that we can take steps to prevent it from doing damage or

at least mediate its effects. How can malicious code take control of a system? How can it lodge in

a system? How does malicious code spread? How can it be recognized? How can it be detected?

How can it be stopped? How can it be prevented? We address these questions in the following

sections.

Kinds of Malicious Code

Malicious code or a rogue program is the general name for unanticipated or undesired effects in

programs or program parts, caused by an agent intent on damage. This definition eliminates

unintentional errors, although they can also have a serious negative effect. This definition also

excludes coincidence, in which two benign programs combine for a negative

effect. The agent is the writer of the program or the person who causes its distribution. By this

definition, most faults found in software inspections, reviews, and testing do not qualify as

malicious code, because we think of them as unintentional. However, keep in mind as you read

this chapter that unintentional faults can in fact invoke the same responses as intentional

malevolence; a benign cause can still lead to a disastrous effect.

You are likely to have been affected by a virus at one time or another, either because your computer

was infected by one or because you could not access an infected system while its administrators

were cleaning up the mess one made. In fact, your virus might actually have been a worm: The

terminology of malicious code is sometimes used imprecisely. A virus is a program that can pass

on malicious code to other nonmalicious programs by modifying them. The term "virus" was

coined because the affected program acts like a biological virus: It infects other healthy subjects

by attaching itself to the program and either destroying it or coexisting with it. Because viruses

are insidious, we cannot assume that a clean program yesterday is still clean today. Moreover, a

good program can be modified to include a copy of the virus program, so the infected good

program itself begins to act as a virus, infecting other programs. The infection usually spreads at a

geometric rate, eventually overtaking an entire computing system and spreading to all other

connected systems.

A virus can be either transient or resident. A transient virus has a life that depends on the life of its

host; the virus runs when its attached program executes and terminates when its attached program

ends. (During its execution, the transient virus may have spread its infection to other programs.)

A resident virus locates itself in memory; then it can remain active or be activated as a stand-

alone program, even after its attached program ends.

A Trojan horse is malicious code that, in addition to its primary effect, has a second, nonobvious

malicious effect.As an example of a computer Trojan horse,

A logic bomb is a class of malicious code that "detonates" or goes off when a specified condition

occurs. A time bomb is a logic bomb whose trigger is a time or date.

A trapdoor or backdoor is a feature in a program by which someone can access the program other

than by the obvious, direct call, perhaps with special privileges. For instance, an automated bank

teller program might allow anyone entering the number 990099 on the keypad to process the log

of everyone's transactions at that machine. In this example, the trapdoor could be intentional, for

maintenance purposes, or it could be an illicit way for the implementer to wipe out any record of a

crime.

A worm is a program that spreads copies of itself through a network. The primary difference between

a worm and a virus is that a worm operates through networks, and a virus can spread through any

medium (but usually uses copied program or data files). Additionally, the worm spreads copies of

itself as a stand-alone program, whereas the virus spreads copies of itself as a program that

attaches to or embeds in other programs.

White et al. also define a rabbit as a virus or worm that self-replicates without bound, with the

intention of exhausting some computing resource. A rabbit might create copies of itself and store

them on disk, in an effort to completely fill the disk, for example.

These definitions match current careful usage. The distinctions among these terms are small, and often

the terms are confused, especially in the popular press. The term "virus" is often used to refer to

any piece of malicious code. Furthermore, two or more forms of malicious

code can be combined to produce a third kind of problem. For instance, a virus can be a time bomb if

the viral code that is spreading will trigger an event after a period of time has passed. The kinds of

malicious code are summarized in Table 3-1.

TABLE 3-1 Types of Malicious Code.

Code Type Characteristics

Virus Attaches itself to program and propagates copies of
itself to other programs

Trojan
horse

Contains unexpected, additional functionality

Logic bomb Triggers action when condition occurs

Time bomb Triggers action when specified time occurs

Trapdoor Allows unauthorized access to functionality

Worm Propagates copies of itself through a network

Rabbit Replicates itself without limit to exhaust resource

Because "virus" is the popular name given to all forms of malicious code and because fuzzy lines exist

between different kinds of malicious code, we will not be too restrictive in the following

discussion. We want to look at how malicious code spreads, how it is activated, and what

effect it can have. A virus is a convenient term for mobile malicious code, and so in the following

sections we use the term "virus" almost exclusively. The points made apply also to other forms

of malicious code.

How Viruses Attach

A printed copy of a virus does nothing and threatens no one. Even executable virus code sitting on a

disk does nothing. What triggers a virus to start replicating? For a virus to do its malicious work

and spread itself, it must be activated by being executed. Fortunately for virus writers, but

unfortunately for the rest of us, there are many ways to ensure that programs will be executed on a

running computer.

For example, recall the SETUP program that you initiate on your computer. It may call dozens or

hundreds of other programs, some on the distribution medium, some already residing on the

computer, some in memory. If any one of these programs contains a virus, the virus code could be

activated. Let us see how. Suppose the virus code were in a program on

the distribution medium, such as a CD; when executed, the virus could install itself on a permanent

storage medium (typically, a hard disk), and also in any and all executing programs in memory.

Human intervention is necessary to start the process; a human being puts the virus on the

distribution medium, and perhaps another initiates the execution of the program to which the virus

is attached. (It is possible for execution to occur without human intervention, though, such as

when execution is triggered by a date or the passage of a certain amount of time.) After that, no

human intervention is needed; the virus can spread by itself.

A more common means of virus activation is as an attachment to an e-mail message. In this attack, the

virus writer tries to convince the victim (the recipient of an e-mail message) to open the

attachment. Once the viral attachment is opened, the activated virus can do its work. Some

modern e-mail handlers, in a drive to "help" the receiver (victim), will automatically open

attachments as soon as the receiver opens the body of the e-mail message. The virus can be

executable code embedded in an executable attachment, but other types of files are equally

dangerous. For example, objects such as graphics or photo images can contain code to be

executed by an editor, so they can be transmission agents for viruses. In general, it is safer to force

users to open files on their own rather than automatically; it is a bad idea for programs to

perform potentially security-relevant actions without a user's consent.

Appended Viruses

A program virus attaches itself to a program; then, whenever the program is run, the virus is activated.

This kind of attachment is usually easy to program.

In the simplest case, a virus inserts a copy of itself into the executable program file before the first

executable instruction. Then, all the virus instructions execute first; after the last virus instruction,

control flows naturally to what used to be the first program instruction.

Virus Appended to a Program.

This kind of attachment is simple and usually effective. The virus writer does not need to know

anything about the program to which the virus will attach, and often the attached program simply

serves as a carrier for the virus. The virus performs its task and then transfers to the original

program. Typically, the user is unaware of the effect of the virus if the original program still does

all that it used to. Most viruses attach in this manner.

Viruses That Surround a Program

An alternative to the attachment is a virus that runs the original program but has control before and

after its execution. For example, a virus writer might want to prevent the virus from being

detected. If the virus is stored on disk, its presence will be given away by its file name, or its size

will affect the amount of space used on the disk. The virus writer might arrange for the virus to

attach itself to the program that constructs the listing of files on the disk. If the virus regains

control after the listing program has generated the listing but before the listing is displayed or

printed, the virus could eliminate its entry from the listing and falsify space counts so that it

appears not to exist.

Integrated Viruses and Replacements

A third situation occurs when the virus replaces some of its target, integrating itself into the original

code of the target.. Clearly, the virus writer has to know the exact structure of the original

program to know where to insert which pieces of the virus.

Virus Integrated into a Program.

Finally, the virus can replace the entire target, either mimicking the effect of the target or ignoring the

expected effect of the target and performing only the virus effect. In this case, the user is most

likely to perceive the loss of the original program.

Document Viruses

Currently, the most popular virus type is what we call the document virus, which is implemented

within a formatted document, such as a written document, a database, a slide presentation, or a

spreadsheet. These documents are highly structured files that contain both data (words or

numbers) and commands (such as formulas, formatting controls, links). The commands are part of

a rich programming language, including macros, variables and procedures, file accesses, and even

system calls. The writer of a document virus uses any of the features of the programming

language to perform malicious actions.

The ordinary user usually sees only the content of the document (its text or data), so the virus writer

simply includes the virus in the commands part of the document, as in the integrated program

virus.

How Viruses Gain Control

The virus (V) has to be invoked instead of the target (T). Essentially, the virus either has to seem to be

T, saying effectively "I am T" (like some rock stars, where the target is the artiste formerly known

as T) or the virus has to push T out of the way and become a substitute for T, saying effectively

"Call me instead of T." A more blatant virus can simply say "invoke me [you fool]." The virus

can assume T's name by replacing (or joining to) T's code in a file structure; this invocation

technique is most appropriate for ordinary programs. The virus can overwrite T in storage (simply

replacing the copy of T in storage, for example). Alternatively, the virus can change the pointers in

the file table so that the virus is located instead of T whenever T is accessed through the file

system.

Virus Completely Replacing a Program.

The virus can supplant T by altering the sequence that would have invoked T to now invoke the virus

V; this invocation can be used to replace parts of the resident operating system by modifying

pointers to those resident parts, such as the table of handlers for different kinds of interrupts.

Homes for Viruses

The virus writer may find these qualities appealing in a virus:

 It is hard to detect.

 It is not easily destroyed or deactivated.

 It spreads infection widely.

 It can reinfect its home program or other programs.

 It is easy to create.

 It is machine independent and operating system independent.

Few viruses meet all these criteria. The virus writer chooses from these objectives when deciding

what the virus will do and where it will reside.

Just a few years ago, the challenge for the virus writer was to write code that would be executed

repeatedly so that the virus could multiply. Now, however, one execution is enough to ensure

widespread distribution. Many viruses are transmitted by e-mail, using either of two routes. In the

first case, some virus writers generate a new e-mail message to all addresses in the victim's

address book. These new messages contain a copy of the virus so that it propagates widely. Often

the message is a brief, chatty, non-specific message that would encourage the new recipient to

open the attachment from a friend (the first recipient). For example, the subject line or message

body may read "I thought you might enjoy this picture from our vacation." In the second case, the

virus writer can leave the infected file for the victim to forward unknowingly. If the virus's effect

is not immediately obvious, the victim may pass the infected file unwittingly to other victims.

Let us look more closely at the issue of viral residence.

One-Time Execution

The majority of viruses today execute only once, spreading their infection and causing their effect in

that one execution. A virus often arrives as an e-mail attachment of a document virus. It is

executed just by being opened.

Boot Sector Viruses

A special case of virus attachment, but formerly a fairly popular one, is the so-called boot sector

virus. When a computer is started, control begins with firmware that determines which hardware

components are present, tests them, and transfers control to an operating system. A given

hardware platform can run many different operating systems, so the operating system is not

coded in firmware but is instead invoked dynamically, perhaps even by a user's choice, after the

hardware test.

The operating system is software stored on disk. Code copies the operating system from disk to

memory and transfers control to it; this copying is called the bootstrap (often boot) load because

the operating system figuratively pulls itself into memory by its bootstraps. The firmware does its

control transfer by reading a fixed number of bytes from a fixed location on the disk (called the

boot sector) to a fixed address in memory and then jumping to that address (which will turn out to

contain the first instruction of the bootstrap loader). The bootstrap loader then reads into memory

the rest of the operating system from disk. To run a different operating system, the user just

inserts a disk with the new operating system and a bootstrap loader. When the user reboots from

this new disk, the loader there brings in and runs another operating system. This same scheme is

used for personal computers, workstations, and large mainframes.

To allow for change, expansion, and uncertainty, hardware designers reserve a large amount of space

for the bootstrap load. The boot sector on a PC is slightly less than 512 bytes, but since the loader

will be larger than that, the hardware designers support "chaining," in which each block of the

bootstrap is chained to (contains the disk location of) the next block. This chaining allows big

bootstraps but also simplifies the installation of a virus. The virus writer simply breaks the chain

at any point, inserts a pointer to the virus code to be executed, and reconnects the chain after the

virus has been installed. This situation is shown in Figure.

Boot Sector Virus Relocating Code.

The boot sector is an especially appealing place to house a virus. The virus gains control very early in

the boot process, before most detection tools are active, so that it can avoid, or at least

complicate, detection. The files in the boot area are crucial parts of the operating system.

Consequently, to keep users from accidentally modifying or deleting them with disastrous results,

the operating system makes them "invisible" by not showing them as part of a normal listing of

stored files, preventing their deletion. Thus, the virus code is not readily noticed by users.

Memory-Resident Viruses

Some parts of the operating system and most user programs execute, terminate, and disappear, with

their space in memory being available for anything executed later. For very frequently used parts

of the operating system and for a few specialized user programs, it would take too long to reload

the program each time it was needed. Such code remains in memory and is called "resident" code.

Examples of resident code are the routine that interprets keys pressed on the keyboard, the code

that handles error conditions that arise during a program's execution, or a program that acts like an

alarm clock, sounding a signal at a time the user determines. Resident routines are sometimes

called TSRs or "terminate and stay resident" routines.

Virus writers also like to attach viruses to resident code because the resident code is activated many

times while the machine is running. Each time the resident code runs, the virus does too. Once

activated, the virus can look for and infect uninfected carriers. For example, after activation, a

boot sector virus might attach itself to a piece of resident code. Then, each time the virus was

activated it might check whether any removable disk in a disk drive was infected and, if not,

infect it. In this way the virus could spread its infection to all removable disks used during the

computing session.

Other Homes for Viruses

A virus that does not take up residence in one of these cozy establishments has to fend more for itself.

But that is not to say that the virus will go homeless.

One popular home for a virus is an application program. Many applications, such as word processors

and spreadsheets, have a "macro" feature, by which a user can record a series of commands and

repeat them with one invocation. Such programs also provide a "startup macro" that is executed

every time the application is executed. A virus writer can create a virus macro that adds itself to

the startup directives for the application. It also then embeds a copy of itself in data files so that

the infection spreads to anyone receiving one or more of those files.

Libraries are also excellent places for malicious code to reside. Because libraries are used by many

programs, the code in them will have a broad effect. Additionally, libraries are often shared

among users and transmitted from one user to another, a practice that spreads the infection.

Finally, executing code in a library can pass on the viral infection to other transmission media.

Compilers, loaders, linkers, runtime monitors, runtime debuggers, and even virus control

programs are good candidates for hosting viruses because they are widely shared.

Virus Signatures

A virus cannot be completely invisible. Code must be stored somewhere, and the code must be in

memory to execute. Moreover, the virus executes in a particular way, using certain methods to

spread. Each of these characteristics yields a telltale pattern, called a signature, that can be found

by a program that knows to look for it. The virus's signature is important for creating a program,

called a virus scanner, that can automatically detect and, in some cases, remove viruses. The

scanner searches memory and long-term storage, monitoring execution and watching for the

telltale signatures of viruses. For example, a scanner looking for signs of the Code Red worm can

look for a pattern containing the following characters:

When the scanner recognizes a known virus's pattern, it can then block the virus, inform the user, and

deactivate or remove the virus. However, a virus scanner is effective only if it has been kept up-

to-date with the latest information on current viruses. Side-bar 3-4 describes how viruses were the

primary security breach among companies surveyed in 2001.

Storage Patterns

Most viruses attach to programs that are stored on media such as disks. The attached virus piece is

invariant, so that the start of the virus code becomes a detectable signature. The attached piece is

always located at the same position relative to its attached file. For example, the virus might

always be at the beginning, 400 bytes from the top, or at the bottom of the infected file. Most

likely, the virus will be at the beginning of the file, because the virus writer wants to obtain

control of execution before the bona fide code of the infected program is in charge. In the simplest

case, the virus code sits at the top of the program, and the entire virus does its malicious duty

before the normal code is invoked. In other cases, the virus infection consists of only a handful of

instructions that point or jump to other, more detailed instructions elsewhere. For example, the

infected code may consist of condition testing and a jump or call to a separate virus module. In

either case, the code to which control is transferred will also have a recognizable pattern.

Recognizable Patterns in Viruses.

A virus may attach itself to a file, in which case the file's size grows. Or the virus may obliterate all or

part of the underlying program, in which case the program's size does not change but the

program's functioning will be impaired. The virus writer has to choose one of these detectable

effects.

The virus scanner can use a code or checksum to detect changes to a file. It can also look for

suspicious patterns, such as a JUMP instruction as the first instruction of a system program (in

case the virus has positioned itself at the bottom of the file but wants to be executed first).

Execution Patterns

A virus writer may want a virus to do several things at the same time, namely, spread infection, avoid

detection, and cause harm. These goals are shown in Table 3-2, along with ways each goal can be

addressed. Unfortunately, many of these behaviors are perfectly normal and might otherwise go

undetected. For instance, one goal is modifying the file directory; many normal programs create

files, delete files, and write to storage media. Thus, there are no key signals that point to the

presence of a virus.

Most virus writers seek to avoid detection for themselves and their creations. Because a disk's boot

sector is not visible to normal operations (for example, the contents of the boot sector do not show

on a directory listing), many virus writers hide their code there. A resident virus can monitor disk

accesses and fake the result of a disk operation that would show the virus hidden in a boot sector

by showing the data that should have been in the boot sector (which the virus has moved

elsewhere).

There are no limits to the harm a virus can cause. On the modest end, the virus might do nothing;

some writers create viruses just to show they can do it. Or the virus can be relatively benign,

displaying a message on the screen, sounding the buzzer, or playing music. From there, the

problems can escalate. One virus can erase files, another an entire disk; one virus can prevent a

computer from booting, and another can prevent writing to disk. The damage is bounded only by

the creativity of the virus's author.

TABLE 3-2 Virus Effects and Causes.

Virus Effect How It Is Caused

Attach to executable program Modify file directory
 Write to executable program file

Attach to data or control file Modify directory
 Rewrite data
 Append to data
 Append data to self

Remain in memory
 handler address table

 Intercept interrupt by modifying interrupt
 Load self in nontransient memory area

Infect disks Intercept interrupt
 Intercept operating system call (to format disk, for

example)
 Modify system file
 Modify ordinary executable program

Conceal self falsify result Intercept system calls that would reveal self and
 Classify self as "hidden" file

Spread infection Infect boot sector
 Infect systems program
 Infect ordinary program
 Infect data ordinary program reads to control its

execution

Prevent deactivation
deactivation

 Activate before deactivating program and block
 Store copy to reinfect after deactivation

Section 3.3 Viruses and Other Malicious Code

Transmission Patterns

A virus is effective only if it has some means of transmission from one location to another. As we

have already seen, viruses can travel during the boot process, by attaching to an executable file or

traveling within data files. The travel itself occurs during execution of an already infected

program. Since a virus can execute any instructions a program can, virus travel is not confined to

any single medium or execution pattern. For example, a virus can

arrive on a diskette or from a network connection, travel during its host's execution to a hard disk boot

sector, reemerge next time the host computer is booted, and remain in memory to infect other

diskettes as they are accessed.

Polymorphic Viruses

The virus signature may be the most reliable way for a virus scanner to identify a virus. If a particular

virus always begins with the string 47F0F00E08 (in hexadecimal) and has string 00113FFF

located at word 12, it is unlikely that other programs or data files will have these exact

characteristics. For longer signatures, the probability of a correct match increases.

If the virus scanner will always look for those strings, then the clever virus writer can cause something

other than those strings to be in those positions. For example, the virus could have two alternative

but equivalent beginning words; after being installed, the virus will choose one of the two

words for its initial word. Then, a virus scanner would have to look for both patterns. A virus that

can change its appearance is called a polymorphic virus. (Poly means "many" and morph means

"form".) A two-form polymorphic virus can be handled easily as two independent viruses.

Therefore, the virus writer intent on preventing detection of the virus will want either a large

or an unlimited number of forms so that the number of possible forms is too large for a virus

scanner to search for. Simply embedding a random number or string at a fixed place in the

executable version of a virus is not sufficient, because the signature of the virus is just the

constant code excluding the random part. A polymorphic virus has to randomly reposition all

parts of itself and randomly change all fixed data. Thus, instead of containing the fixed (and

therefore searchable) string "HA! INFECTED BY A VIRUS," a polymorphic virus has to change

even that pattern sometimes.

Trivially, assume a virus writer has 100 bytes of code and 50 bytes of data. To make two virus

instances different, the writer might distribute the first version as 100 bytes of code followed by

all 50 bytes of data. A second version could be 99 bytes of code, a jump instruction, 50 bytes of

data, and the last byte of code. Other versions are 98 code bytes jumping to the last two, 97 and

three, and so forth. Just by moving pieces around the virus writer can create enough different

appearances to fool simple virus scanners. Once the scanner writers became aware of these kinds

of tricks, however, they refined their signature definitions.

A more sophisticated polymorphic virus randomly intersperses harmless instructions throughout its

code. Examples of harmless instructions include addition of zero to a number, movement of a data

value to its own location, or a jump to the next instruction. These "extra" instructions make it

more difficult to locate an invariant signature.

A simple variety of polymorphic virus uses encryption under various keys to make the stored form of

the virus different. These are sometimes called encrypting viruses. This type of virus must contain

three distinct parts: a decryption key, the (encrypted) object code of the virus, and the

(unencrypted) object code of the decryption routine. For these viruses, the decryption routine

itself or a call to a decryption library routine must be in the clear, and so that becomes the

signature.

To avoid detection, not every copy of a polymorphic virus has to differ from every other copy. If

the virus changes occasionally, not every copy will match a signature of every other copy.

The Source of Viruses

Since a virus can be rather small, its code can be "hidden" inside other larger and more complicated

programs. Two hundred lines of a virus could be separated into one hundred packets of two lines

of code and a jump each; these one hundred packets could be easily hidden inside a compiler, a

database manager, a file manager, or some other large utility.

Virus discovery could be aided by a procedure to determine if two programs are equivalent. However,

theoretical results in computing are very discouraging when it comes to the complexity of the

equivalence problem. The general question, "are these two programs equivalent?" is undecidable

(although that question can be answered for many specific pairs of programs). Even ignoring the

general undecidability problem, two modules may produce subtly different results that may—or

may not—be security relevant. One may run faster, or the first may use a temporary file for work

space whereas the second performs all its computations in memory. These differences could be

benign, or they could be a marker of an infection. Therefore, we are unlikely to develop a

screening program that can separate infected modules from uninfected ones.

Although the general is dismaying, the particular is not. If we know that a particular virus may

infect a computing system, we can check for it and detect it if it is there. Having found the virus,

however, we are left with the task of cleansing the system of it. Removing the virus in a running

system requires being able to detect and eliminate its instances faster than it can spread.

Prevention of Virus Infection

The only way to prevent the infection of a virus is not to share executable code with an infected

source. This philosophy used to be easy to follow because it was easy to tell if a file was

executable or not. For example, on PCs, a .exe extension was a clear sign that the file was

executable. However, as we have noted, today's files are more complex, and a seemingly

nonexecutable file may have some executable code buried deep within it. For example, a word

processor may have commands within the document file; as we noted earlier, these commands,

called macros, make it easy for the user to do complex or repetitive things. But they are really

executable code embedded in the context of the document. Similarly, spreadsheets, presentation

slides, and other office- or business-related files can contain code or scripts that can be executed

in various ways—and thereby harbor viruses. And, as we have seen, the applications that run or

use these files may try to be helpful by automatically invoking the executable code, whether you

want it run or not! Against the principles of good security, e-mail handlers can be set to

automatically open (without performing access control) attachments or embedded code for the

recipient, so your e-mail message can have animated bears dancing across the top.

Another approach virus writers have used is a little-known feature in the Microsoft file design.

Although a file with a .doc extension is expected to be a Word document, in fact, the true

document type is hidden in a field at the start of the file. This convenience ostensibly helps a user

who inadvertently names a Word document with a .ppt (Power-Point) or any other extension. In

some cases, the operating system will try to open the associated application but, if that fails, the

system will switch to the application of the hidden file type. So, the virus writer creates an

executable file, names it with an inappropriate extension, and sends it to the victim, describing it

is as a picture or a necessary code add-in or something else desirable. The unwitting recipient

opens the file and, without intending to, executes the malicious code.

More recently, executable code has been hidden in files containing large data sets, such as pictures or

read-only documents. These bits of viral code are not easily detected by virus scanners and

certainly not by the human eye. For example, a file containing a photograph may be highly

granular; if every sixteenth bit is part of a command string that can be executed, then the virus is

very difficult to detect.

Since you cannot always know which sources are infected, you should assume that any outside source

is infected. Fortunately, you know when you are receiving code from an outside source;

unfortunately, it is not feasible to cut off all contact with the outside world.

In their interesting paper comparing computer virus transmission with human disease transmission,

Kephart et al. observe that individuals' efforts to keep their computers free from viruses lead to

communities that are generally free from viruses because members of the community have little

(electronic) contact with the outside world. In this case, transmission is contained not because of

limited contact but because of limited contact outside the community. Governments, for military

or diplomatic secrets, often run disconnected network communities. The trick seems to be in

choosing one's community prudently. However, as use of the Internet and the World Wide Web

increases, such separation is almost impossible to maintain.

Nevertheless, there are several techniques for building a reasonably safe community for electronic

contact, including the following:

 Use only commercial software acquired from reliable, well-established vendors. There is

always a chance that you might receive a virus from a large manufacturer with a name everyone

would recognize. However, such enterprises have significant reputations that could be seriously

damaged by even one bad incident, so they go to some degree of trouble to keep their products

virus-free and to patch any problem-causing code right away. Similarly, software distribution

companies will be careful about products they handle.

 Test all new software on an isolated computer. If you must use software from a questionable

source, test the software first on a computer with no hard disk, not connected to a network, and

with the boot disk removed. Run the software and look for unexpected behavior, even simple

behavior such as unexplained figures on the screen. Test the computer with a copy of an up-to-

date virus scanner, created before running the suspect program. Only if the program passes these

tests should it be installed on a less isolated machine.

 Open attachments only when you know them to be safe. What constitutes "safe" is up to you, as

you have probably already learned in this chapter. Certainly, an attachment from an unknown

source is of questionable safety. You might also distrust an attachment from a known source but

with a peculiar message.

 Make a recoverable system image and store it safely. If your system does become infected, this

clean version will let you reboot securely because it overwrites the corrupted system files with

clean copies. For this reason, you must keep the image write- protected during reboot. Prepare

this image now, before infection; after infection it is too late. For safety, prepare an extra copy of

the safe boot image.

 Make and retain backup copies of executable system files. This way, in the event of a virus

infection, you can remove infected files and reinstall from the clean backup copies (stored in a

secure, offline location, of course).

 Use virus detectors (often called virus scanners) regularly and update them daily. Many of the

virus detectors available can both detect and eliminate infection from viruses. Several scanners

are better than one, because one may detect the viruses that others miss. Because scanners

search for virus signatures, they are constantly being revised as new viruses are discovered. New

virus signature files, or new versions of scanners, are distributed frequently; often, you can

request automatic downloads from the vendor's web site. Keep your detector's signature file up-

to-date.

Truths and Misconceptions About Viruses

Because viruses often have a dramatic impact on the computer-using community, they are often

highlighted in the press, particularly in the business section. However, there is much

misinformation in circulation about viruses. Let us examine some of the popular claims about

them.

 Viruses can infect only Microsoft Windows systems. False. Among students and office workers,

PCs are popular computers, and there may be more people writing software (and viruses) for

them than for any other kind of processor. Thus, the PC is most frequently the target when

someone decides to write a virus. However, the principles of virus attachment and infection

apply equally to other processors, including Macintosh computers, Unix workstations, and

mainframe computers. In fact, no writeable stored- program computer is immune to possible

virus attack. As we noted in Chapter 1, this situation means that all devices containing computer

code, including automobiles, airplanes, microwave ovens, radios, televisions, and radiation

therapy machines have the potential for being infected by a virus.

 Viruses can modify "hidden" or "read only" files. True. We may try to protect files by using two

operating system mechanisms. First, we can make a file a hidden file so that a user or program

listing all files on a storage device will not see the file's name. Second, we can apply a read-only

protection to the file so that the user cannot change the file's contents. However, each of these

protections is applied by software, and virus software can override the native software's

protection. Moreover, software protection is layered, with the operating system providing the

most elementary protection. If a secure operating system obtains control before a virus

contaminator has executed, the operating system can prevent contamination as long as it blocks

the attacks the virus will make.

 Viruses can appear only in data files, or only in Word documents, or only in programs. False.

What are data? What is an executable file? The distinction between these two concepts is not

always clear, because a data file can control how a program executes and even cause a program

to execute. Sometimes a data file lists steps to be taken by the program that reads the data, and

these steps can include executing a program. For example, some applications contain a

configuration file whose data are exactly such steps. Similarly, word processing document files

may contain startup commands to execute when the document is opened; these startup

commands can contain malicious code. Although, strictly speaking, a virus can activate and

spread only when a program executes, in fact, data files are acted upon by programs. Clever

virus writers have been able to make data control files that cause programs to do many things,

including pass along copies of the virus to other data files.

 Viruses spread only on disks or only in e-mail. False. File-sharing is often done as one user

provides a copy of a file to another user by writing the file on a transportable disk. However, any

means of electronic file transfer will work. A file can be placed in a network's library or posted

on a bulletin board. It can be attached to an electronic mail message or made available for

download from a web site. Any mechanism for sharing files—of programs, data, documents, and

so forth—can be used to transfer a virus.

 Viruses cannot remain in memory after a complete power off/power on reboot. True. If a virus is

resident in memory, the virus is lost when the memory loses power. That is, computer memory

(RAM) is volatile, so that all contents are deleted when power is lost.2 However, viruses written

to disk certainly can remain through a reboot cycle and reappear after the reboot. Thus, you

can receive a virus infection, the virus can be written to disk (or to network storage), you

can turn the machine off and back on, and the virus can be reactivated during the reboot. Boot

sector viruses gain control when a machine reboots (whether it is a hardware or software

reboot), so a boot sector virus may remain through a reboot cycle because it activates

immediately when a reboot has completed.

 Viruses cannot infect hardware. True. Viruses can infect only things they can modify; memory,

executable files, and data are the primary targets. If hardware contains writeable storage (so-

called firmware) that can be accessed under program control, that storage is subject to virus

attack. There have been a few

 Viruses can be malevolent, benign, or benevolent. True. Not all viruses are bad. For example, a

virus might locate uninfected programs, compress them so that they occupy less memory, and

insert a copy of a routine that decompresses the program when its execution begins. At the same

time, the virus is spreading the compression function to other programs. This virus could

substantially reduce the amount of storage required for stored programs, possibly by up to 50

percent. However, the compression would be done at the request of the virus, not at the request,

or even knowledge, of the program owner.

2.4 TARGETED MALICIOUS PROGRAM

So far, we have looked at anonymous code written to affect users and machines indiscriminately.

Another class of malicious code is written for a particular system, for a particular application, and

for a particular purpose. Many of the virus writers' techniques apply, but there are also some new

ones.

Trapdoors

A trapdoor is an undocumented entry point to a module. The trapdoor is inserted during code

development, perhaps to test the module, to provide "hooks" by which to connect future

modifications or enhancements or to allow access if the module should fail in the future. In

addition to these legitimate uses, trapdoors can allow a programmer access to a program once it is

placed in production.

Salami Attack

An attack known as a salami attack. This approach gets its name from the way odd bits of meat and

fat are fused together in a sausage or salami. In the same way, a salami attack merges bits of

seemingly inconsequential data to yield powerful results. For example,

programs often disregard small amounts of money in their computations, as when there are fractional

pennies as interest or tax is calculated.

Such programs may be subject to a salami attack, because the small amounts are shaved from each

computation and accumulated elsewhere—such as the programmer's bank account! The shaved

amount is so small that an individual case is unlikely to be noticed, and the accumulation can be

done so that the books still balance overall. However, accumulated amounts can add up to a tidy

sum, supporting a programmer's early retirement or new car. It is often the resulting expenditure,

not the shaved amounts, that gets the attention of the authorities.

Covert Channels: Programs That Leak Information

So far, we have looked at malicious code that performs unwelcome actions. Next, we turn to programs

that communicate information to people who should not receive it. The communication travels

unnoticed, accompanying other, perfectly proper, communications. The general name for these

extraordinary paths of communication is covert channels.

Suppose a group of students is preparing for an exam for which each question has four choices (a, b,

c, d); one student in the group, Sophie, understands the material perfectly and she agrees to help

the others. She says she will reveal the answers to the questions, in order, by coughing once for

answer "a," sighing for answer "b," and so forth. Sophie uses a communications channel that

outsiders may not notice; her communications are hidden in an open channel. This

communication is a human example of a covert channel.

Timing Channels

Other covert channels, called timing channels, pass information by using the speed at which things

happen. Actually, timing channels are shared resource channels in which the shared resource is

time.

A service program uses a timing channel to communicate by using or not using an assigned amount of

computing time. In the simple case, a multiprogrammed system with two user processes divides

time into blocks and allocates blocks of processing alternately to one process and the other. A

process is offered processing time, but if the process is waiting for another event to occur and has

no processing to do, it rejects the offer. The service process either uses its block (to signal a 1) or

rejects its block (to signal a 0).

2.5 CONTROL AGAINST PROGRAM THREAT

There are many ways a program can fail and many ways to turn the underlying faults into security

failures. It is of course better to focus on prevention than cure; how do we use controls during

software development—the specifying, designing, writing, and testing of the program—to find

and eliminate the sorts of exposures we have discussed? The discipline of software engineering

addresses this question more globally, devising approaches to ensure the quality of software. In

this book, we provide an overview of several techniques that can prove useful in finding and

fixing security flaws .

In this section we look at three types of controls: developmental, operating system, and

administrative. We discuss each in turn.

Developmental Controls

Many controls can be applied during software development to ferret out and fix problems. So let us

begin by looking at the nature of development itself, to see what tasks are involved in specifying,

designing, building, and testing software. The Nature of Software Development Software

development is often considered a solitary effort; a programmer sits with a specification or design

and grinds out line after line of code. But in fact, software development is a collaborative effort,

involving people with different skill sets who combine their expertise to produce a working

product. Development requires people who can

 specify the system, by capturing the requirements and building a model of how the system
should work from the users' point of view

 design the system, by proposing a solution to the problem described by the requirements

and building a model of the solution

 implement the system, by using the design as a blueprint for building a working
solution

 test the system, to ensure that it meets the requirements and implements the solution as
called for in the design

 review the system at various stages, to make sure that the end products are consistent with

the specification and design models

 document the system, so that users can be trained and supported

 manage the system, to estimate what resources will be needed for development and to track
when the system will be done

 maintain the system, tracking problems found, changes needed, and changes made, and

evaluating their effects on overall quality and functionality

One person could do all these things. But more often than not, a team of developers works together to

perform these tasks. Sometimes a team member does more than one activity; a tester can take part

in a requirements review, for example, or an implementer can write documentation. Each team is

different, and team dynamics play a large role in the team's success.

We can examine both product and process to see how each contributes to quality and in particular to

security as an aspect of quality. Let us begin with the product, to get a sense of how we recognize

highquality secure software.

Modularity, Encapsulation, and Information Hiding

Code usually has a long shelf-life, and it is enhanced over time as needs change and faults are found

and fixed. For this reason, a key principle of software engineering is to create a design or code in

small, self-contained units, called components or modules; when a system is written this way, we

say that it is modular. Modularity offers advantages for program development in general and

security in particular.

If a component is isolated from the effects of other components, then it is easier to trace a problem to

the fault that caused it and to limit the damage the fault causes. It is also easier to maintain the

system, since changes to an isolated component do not affect other components. And it is easier to

see where vulnerabilities may lie if the component is isolated. We call this isolation

encapsulation.

 Information hiding is another characteristic of modular software. When information is hidden, each

component hides its precise implementation or some other design decision from the others. Thus,

when a change is needed, the overall design can remain intact while only the necessary changes

are made to particular components

2.6 PROTECTION IN GENERAL PURPOSE OPERATING SYSTEM PROTECTED OBJECT AND METHOD OF

PROTECTION MEMORY AND ADDRESS PROTECTION

Protected objects

The rise of multiprogramming meant that several aspects of a computing system required protection:

 memory

 sharable I/O devices, such as disks

 serially reusable I/O devices, such as printers and tape drives

 sharable programs and subprocedures

 networks

 sharable data

As it assumed responsibility for controlled sharing, the operating system had to protect theseobjects.

Security in operating system

The basis of protection is separation: keeping one user's objects separate from other users.Rushby

and Randell noted that separation in an operating system can occur in several ways:

 physical separation, in which different processes use different physical objects, such as
separate printers for output requiring different levels of security

 temporal separation, in which processes having different security requirements are
executed at different times

 logical separation, in which users operate under the illusion that no other processes exist,

as when an operating system constrains a program's accesses so that the

program cannot access objects outside its permitted domain

 cryptographic separation, in which processes conceal their data and computations in such a
way that they are unintelligible to outside processes

Of course, combinations of two or more of these forms of separation are also possible.

The categories of separation are listed roughly in increasing order of complexity to implement, and,

for the first three, in decreasing order of the security provided. However, the first two approaches

are very stringent and can lead to poor resource utilization. Therefore, we would like to shift the

burden of protection to the operating system to allow concurrent execution of processes having

different security needs.

But separation is only half the answer. We want to separate users and their objects, but we also want

to be able to provide sharing for some of those objects. For example, two users with different

security levels may want to invoke the same search algorithm or function call.

We would like the users to be able to share the algorithms and functions without compromisingtheir

individual security needs. An operating system can support separation and sharing in several ways,

offering protection at any of several levels.

 Do not protect. Operating systems with no protection are appropriate when sensitive
procedures are being run at separate times.

 Isolate. When an operating system provides isolation, different processes running

concurrently are unaware of the presence of each other. Each process has its own address space,

files, and other objects. The operating system must confine each process somehow so that the objects

of the other processes are completely concealed.

 Share all or share nothing. With this form of protection, the owner of an objectdeclares it to

be public or private. A public object is available to all users, whereas a

private object is available only to its owner.

 Share via access limitation. With protection by access limitation, the operating system checks

the allowability of each user's potential access to an object. That is, access control is implemented for

a specific user and a specific object. Lists of acceptable actions guide the operating system in

determining whether a particular user should have access to a particular object. In some sense, the

operating system acts as a guard between users and objects, ensuring that only authorized accesses

occur.

 Share by capabilities. An extension of limited access sharing, this form of protection allows
dynamic creation of sharing rights for objects. The degree of sharing can depend on the owner or
the subject, on the context of the computation, or on the object itself.

 Limit use of an object. This form of protection limits not just the access to an object but the

use made of that object after it has been accessed. For example, a user may be allowed to view a

sensitive document, but not to print a copy of it. More powerfully, a user may be allowed access to

data in a database to derive statistical summaries (such as average salary at a particular grade level),

but not to determine specific data values (salaries of individuals).

Methods of memory protection

Memory protection is a way to control memory access rights on a computer, and is a part of most

modern operating systems. The main purpose of memory protection is to prevent a process

from accessing memory that has not been allocated to it. This prevents a bug within a process

from affecting other processes, or the operating system itself, and instead results in a

segmentation fault or storage violation exception being sent to the offending process, generally

causing abnormal termination (killing the process). Memory protection for computer

security includes additional techniques such as address space layout randomization and

executable space protection.

Segmentation

Segmentation refers to dividing a computer's memory into segments. A reference to a memory

location includes a value that identifies a segment and an offset within that segment.The x86

architecture has multiple segmentation features, which are helpful for using protected memory on

this architecture. On the x86 processor architecture, the Global Descriptor Table and Local

Descriptor Tables can be used to reference segments in the computer's memory. Pointers to

memory segments on x86 processors can also be stored in the processor's segment registers.

Initially x86 processors had 4 segment registers, CS (code segment), SS (stack segment), DS (data

segment) and ES (extra segment); later another two segment registers were added – FS and GS.

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Segmentation_fault
http://en.wikipedia.org/wiki/Storage_violation
http://en.wikipedia.org/wiki/Abnormal_termination
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://en.wikipedia.org/wiki/Executable_space_protection
http://en.wikipedia.org/wiki/Segmentation_(memory)
http://en.wikipedia.org/wiki/X86_architecture
http://en.wikipedia.org/wiki/X86_architecture
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Global_Descriptor_Table
http://en.wikipedia.org/wiki/Global_Descriptor_Table
http://en.wikipedia.org/wiki/Local_Descriptor_Table
http://en.wikipedia.org/wiki/Local_Descriptor_Table

Paged virtual memory

In paging the memory address space is divided into equal-sized blocks called pages. Using virtual

memory hardware, each page can reside in any location of the computer's physical memory, or be

flagged as being protected. Virtual memory makes it possible to have a linear virtual memory

address space and to use it to access blocks fragmented over physical memory address space.Most

computer architectures which support paging also use pages as the basis for memory protection.

A page table maps virtual memory to physical memory. The page table is usually invisible to the

process. Page tables make it easier to allocate additional memory, as each new page can be

allocated from anywhere in physical memory.

It is impossible for an application to access a page that has not been explicitly allocated to it, because

every memory address either points to a page allocated to that application, or generates an

interrupt called a page fault. Unallocated pages, and pages allocated to any other application, do

not have any addresses from the application point of view.

A page fault may not necessarily indicate an error. Page faults are not only used for memory

protection. The operating system may manage the page table in such a way that a reference to a

page that has been previously swapped out to disk causes a page fault. The operating

system intercepts the page fault and, loads the required memory page, and the application

continues as if no fault had occurred. This scheme, known as virtual memory, allows in- memory

data not currently in use to be moved to disk storage and back in a way which is transparent to

applications, to increase overall memory capacity.

software fault handler can, if desired, check the missing key against a larger list of keys maintained by

software; thus, the protection key registers inside the processor may be treated as a software-

managed cache of a larger list of keys associated with a process.

Simulated segmentation

Simulation is use of a monitoring program to interpret the machine code instructions of some

computer architectures. Such an Instruction Set Simulator can provide memory protection by

using a segmentation-like scheme and validating the target address and length of each instruction

in real time before actually executing them. The simulator must calculate the target address and

length and compare this against a list of valid address ranges that it holds concerning the thread's

environment, such as any dynamic memoryblocks acquired since the thread's inception, plus any

valid shared static memory slots. The meaning of "valid" may change throughout the thread's life

depending upon context. It may sometimes be allowed to alter a static block of storage, and

sometimes not, depending upon the current mode of execution, which may or may not depend on

a storage key or supervisor state.

It is generally not advisable to use this method of memory protection where adequate facilities exist

on a CPU, as this takes valuable processing power from the computer. However, it is generally

used for debugging and testing purposes to provide an extra fine level of granularity to

otherwise generic storage violations and can indicate precisely which

http://en.wikipedia.org/wiki/Page_(computing)
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Virtual_address_space
http://en.wikipedia.org/wiki/Virtual_address_space
http://en.wikipedia.org/wiki/Physical_memory
http://en.wikipedia.org/wiki/Physical_memory
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Page_table
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Page_fault
http://en.wikipedia.org/wiki/Swapping_(memory_management)
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/System_monitoring
http://en.wikipedia.org/wiki/System_monitoring
http://en.wikipedia.org/wiki/Instruction_Set_Simulator
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Storage_violation

instruction is attempting to overwrite the particular section of storage which may have the same

storage key as unprotected storage.

2.7 FILE PROTECTION MECHANISM

Until now, we have examined approaches to protecting a general object, no matter the object's

nature or type. But some protection schemes are particular to the type. To see how they work, we

focus in this section on file protection. The examples we present are only representative; they do

not cover all possible means of file protection on the market.

Basic Forms of Protection

We noted earlier that all multiuser operating systems must provide some minimal protection to keep

one user from maliciously or inadvertently accessing or modifying the files of another. As the

number of users has grown, so also has the complexity of these protection schemes.

All “None Protection

In the original IBM OS operating systems, files were by default public. Any user could read, modify,

or delete a file belonging to any other user. Instead of software- or hardware-based protection, the

principal protection involved trust combined with ignorance. System designers supposed that users

could be trusted not to read or modify others' files, because the users would expect the same

respect from others. Ignorance helped this situation, because a user could access a file only by

name ; presumably users knew the names only of those files to which they had legitimate access.

However, it was acknowledged that certain system files were sensitive and that the system

administrator could protect them with a password. A normal user could exercise this feature, but

passwords were viewed as most valuable for protecting operating system files. Two philosophies

guided password use. Sometimes, passwords were used to control all accesses (read, write, or

delete), giving the system administrator complete control over all files. But at other times

passwords would control only write and delete accesses , because only these two actions affected

other users. In either case, the password mechanism required a system operator's intervention each

time access to the filebegan .

However, this all-or-none protection is unacceptable for several reasons.

 Lack of trust . The assumption of trustworthy users is not necessarily justified. For systems with few

users who all know each other, mutual respect might suffice; but in large systems where not every

user knows every other user, there is no basis for trust.

 All or nothing . Even if a user identifies a set of trustworthy users, there is no convenient way to allow

access only to them.

 Rise of timesharing . This protection scheme is more appropriate for a batch environment, in which

users have little chance to interact with other users and in which users do their thinking and exploring

when not interacting with the system. However, on timesharing systems, users interact with other

users. Because users choose when to execute programs, they are more likely in a timesharing

environment to arrange computing tasks to be able to pass results from one program or one user to

another.

 Complexity . Because (human) operator intervention is required for this file protection, operating

system performance is degraded. For this reason, this type of file protection is discouraged by

computing centers for all but the most sensitive data sets.

 File listings . For accounting purposes and to help users remember for what files they are responsible,

various system utilities can produce a list of all files. Thus, users are not

necessarily ignorant of what files reside on the system. Interactive users may try to browse through

anyunprotected files.

Group Protection

Because the all-or-nothing approach has so many drawbacks, researchers sought an improved way to

protect files. They focused on identifying groups of users who had some common relationship. In

a typical implementation, the world is divided into three classes: the user, a trusted working group

associated with the user, and the rest of the users. For simplicity we can call these classes user,

group, and world . This form of protection is used on some network systems and the Unix system.

All authorized users are separated into groups. A group may consist of several

members working on a common project, a department, a class, or a single user. The basis for

group membership is need to share . The group members have some common interest and

therefore are assumed to have files to share with the other group members. In this approach, no

user belongs to more than one group. (Otherwise, a member belonging to groups A and B could

pass along an A file to another B group member.)

When creating a file, a user defines access rights to the file for the user, for other members of the

same group, and for all other users in general. Typically, the choices for access rights are a

limited set, such as {read, write, execute, delete}. For a particular file, a user might declare read-

only access to the general world, read and write access to the group, and all rights to the user. This

approach would be suitable for a paper being developed by a group, whereby the different

members of the group might modify sections being written within the group. The paper itself

should be available for people outside the group to review but not change.

A key advantage of the group protection approach is its ease of implementation. A user is recognized

by two identifiers (usually numbers): a user ID and a group ID. These identifiers are stored in the

file directory entry for each file and are obtained by the operating system when a user logs in.

Therefore, the operating system can easily check whether a proposed access to a file is requested

from someone whose group ID matches the group ID for the file to be accessed.

Although this protection scheme overcomes some of the shortcomings of the all-or-nothing scheme, it

introduces some new difficulties of its own.

 Group affiliation . A single user cannot belong to two groups. Suppose Tom belongs to one group

with Ann and to a second group with Bill. If Tom indicates that a file is to be readable by the group, to

which group(s) does this permission refer? Suppose a file of Ann's is readable by the group; does Bill

have access to it? These ambiguities are most simply resolved by declaring that every user belongs to

exactly one group. (This restriction does not mean that all users belong to the same group.)

 Multiple personalities . To overcome the one-person one-group restriction, certain people might obtain

multiple accounts, permitting them, in effect, to be multiple users. This hole in the protection

approach leads to new problems, because a single person can be only one user at a time. To see how

problems arise, suppose Tom obtains two accounts, thereby becoming Tom1 in a group with Ann and

Tom2 in a group with Bill. Tom1 is not in the same group as Tom2, so any files, programs, or aids

developed under the Tom1 account can be available to Tom2 only if they are available to the

entire world. Multiple personalities lead to a proliferation of accounts, redundant files, limited

protection for files of general interest, and inconvenience to users.

 All groups . To avoid multiple personalities, the system administrator may decide that Tom should

have access to all his files any time he is active. This solution puts the responsibility

on Tom to control with whom he shares what things. For example, he may be in Group1 with Ann and

Group2 with Bill. He creates a Group1 file to share with Ann. But if he is active in Group2 the

nexttime he is logged in, he still sees the Group1 file and may not realize that it is not accessible to

Bill, too.

 Limited sharing . Files can be shared only within groups or with the world. Users want to be able to

identify sharing partners for a file on a per-file basis, for example, sharing one file with ten people

and another file with twenty others.

Single Permissions

In spite of their drawbacks, the file protection schemes we have described are relatively simple and

straightforward. The simplicity of implementing them suggests other easy-to- manage methods

that provide finer degrees of security while associating permission with a single file.

Password or Other Token

We can apply a simplified form of password protection to file protection by allowing a user to

assign a password to a file. User accesses are limited to those who can supply the correct

password at the time the file is opened. The password can be required for any access or only for

modifications (write access).

Password access creates for a user the effect of having a different "group" for every file. However, file

passwords suffer from difficulties similar to those of authentication passwords:

 Loss . Depending on how the passwords are implemented, it is possible that no one will be able to

replace a lost or forgotten password. The operators or system administrators can

certainlyintervene and unprotect or assign a particular password, but often they cannot determine what

password a user has assigned; if the user loses the password, a new one must be assigned.

 Use . Supplying a password for each access to a file can be inconvenient and time consuming.

 Disclosure . If a password is disclosed to an unauthorized individual, the file becomes immediately

accessible. If the user then changes the password to reprotect the file, all the other legitimate users

must be informed of the new password because their old password will fail.

 Revocation . To revoke one user's access right to a file, someone must change the password, thereby

causing the same problems as disclosure.

Temporary Acquired Permission

The Unix operating system provides an interesting permission scheme based on a three- level user

“group “world hierarchy. The Unix designers added a permission called set userid

(suid) . If this protection is set for a file to be executed, the protection level is that of the file's

owner , not theexecutor . To see how it works, suppose Tom owns a file and allows Ann to

execute it with suid . When Ann executes the file, she has the protection rights of Tom, not of

herself.

This peculiar-sounding permission has a useful application. It permits a user to establish data files to

which access is allowed only through specified procedures.

For example, suppose you want to establish a computerized dating service that manipulates a database

of people available on particular nights. Sue might be interested in a date for Saturday, but she

might have already refused a request from Jeff, saying she had other plans. Sue instructs the

service not to reveal to Jeff that she is available. To use the service, Sue, Jeff, and others must

be able to read and write (at least indirectly) the file to determine who is available or to post their

availability. But if Jeff can read the file directly, he would find that

Sue has lied. Therefore, your dating service must force Sue and Jeff (and all others) to access this file

only through an access program that would screen the data Jeff obtains. But if the file access is

limited to read and write by you as its owner, Sue and Jeff will never be able to enter data into it.

The solution is the Unix SUID protection. You create the database file, giving only you access

permission. You also write the program that is to access the database, and save it with the SUID

protection. Then, when Jeff executes your program, he temporarily acquires your access

permission, but only during execution of the program. Jeff never has direct access to the file

because your program will do the actual file access. When Jeff exits from your program, he

regains his own access rights and loses yours. Thus, your program can access the file, but the

program must display to Jeff only the data Jeff is allowed to see.

This mechanism is convenient for system functions that general users should be able to perform only

in a prescribed way. For example, only the system should be able to modify the file of users'

passwords, but individual users should be able to change their own passwords any time they wish.

With the SUID feature, a password change program can be owned by the system, which will

therefore have full access to the system password table. The program to change passwords also

has SUID protection, so that when a normal user executes it, the program can modify the

password file in acarefully constrained way on behalf of the user.

2.8 USER AUTHENTICATION

An operating system bases much of its protection on knowing who a user of the system is. In real-life

situations, people commonly ask for identification from people they do not know: A bank

employee may ask for a driver's license before cashing a check, library employees may require

some identification before charging out books, and immigration officials ask for passports as

proof of identity. In-person identification is usually easier than remote identification. For

instance, some universities do not report grades over the telephone because the office workers do

not necessarily know the students calling. However, a professor who recognizes the voice of a

certain student can release that student's grades. Over time, organizations and systems have

developed means of authentication, using documents, voice recognition, fingerprint and retina

matching, and other trusted means of identification.

In computing, the choices are more limited and the possibilities less secure. Anyone can attempt to log

in to a computing system. Unlike the professor who recognizes a student's voice, the computer

cannot recognize electrical signals from one person as being any different from those of anyone

else. Thus, most computing authentication systems must be based on some knowledge shared

only by the computing system and the user. Authentication mechanisms use any of three qualities

to confirm a user's identity.

1. Something the user knowsa Passwords, PIN numbers, passphrases, a secret handshake, and

mother's maiden name are examples of what a user may know.

2. Something the user hasa Identity badges, physical keys, a driver's license, or a uniform are

common examples of things people have that make them recognizable.

3. Something the user isa These authenticators, called biometrics, are based on a physical

characteristic of the user, such as a fingerprint, the pattern of a person's voice, or a face

(picture). These authentication methods are old (we recognize friends in person by their faces or on a

telephone by their voices) but are just starting to be used in computer authentication. Passwords as

Authenticators

The most common authentication mechanism for user to operating system is a password, a

"word" known to computer and user. Although password protection seems to offer a relatively

secure system, human practice sometimes degrades its quality. In this section we consider

passwords, criteria for selecting them, and ways of using them for authentication. We conclude

by noting other authentication techniques and by studying problems in the authentication process,

notably Trojan horses masquerading as the computer authentication process.

Use of Passwords

Passwords are mutually agreed-upon code words, assumed to be known only to the user and the

system. In some cases a user chooses passwords; in other cases the system assigns them. The

length and format of the password also vary from one system to another.

Even though they are widely used, passwords suffer from some difficulties of use:

 Loss. Depending on how the passwords are implemented, it is possible that no one will be

able to replace a lost or forgotten password. The operators or system administrators can

certainly intervene and unprotect or assign a particular password, but often they cannot

determine what password a user has chosen; if the user loses the password, a new one must be

assigned.

 Use. Supplying a password for each access to a file can be inconvenient and time
consuming.

 Disclosure. If a password is disclosed to an unauthorized individual, the file becomes
immediately accessible. If the user then changes the password to reprotect the file, all other
legitimate users must be informed of the new password because their old

password will fail.

 Revocation. To revoke one user's access right to a file, someone must change the

password, thereby causing the same problems as disclosure.

The use of passwords is fairly straightforward. A user enters some piece of identification, such as a

name or an assigned user ID; this identification can be available to the public or easy to guess

because it does not provide the real security of the system. The system then requestsa password

from the user. If the password matches that on file for the user, the user is authenticated and

allowed access to the system. If the password match fails, the system requests the password again,

in case the user mistyped.

2.9 DESIGNING TRUSTED O.S.

Operating systems are the prime providers of security in computing systems. They support many

programming capabilities, permit multiprogramming and sharing of resources, and enforce

restrictions on program and user behavior. Because they have such power, operating systems are

also targets for attack, because breaking through the defences of an operating system gives

access to the secrets of computing systems.

In we considered operating systems from the perspective of users, asking what primitive

security services general operating systems provide. We studied these four services: 1.memory

protection

2. file protection

3. general object access control

4.user authentication

We say that an operating system is trusted if we have confidence that it provides these four services

consistently and effectively. In this chapter, we take the designer's perspective, viewing a

trusted operating system in terms of the design and function of components that provide security

services. The first four sections of this chapter correspond to the four major underpinnings of a

trusted operating system:

1. Policy. Every system can be described by its requirements: statements of what thesystem should do

and how it should do it. An operating system's security requirements are a set of well-defined,

consistent, and implementable rules that have been clearly and unambiguously expressed. If the

operating system is implemented to meet these requirements, it meets the user's expectations. To

ensure that the requirements are clear, consistent, and effective, the operating system usually follows a

stated security policy: a set of rules that lay out what is to be secured and why. We begin this chapter

by studying several security policies for trusted operating systems.

2. Model. To create a trusted operating system, the designers must be confident that the proposed

system will meet its requirements while protecting appropriate objects and relationships. They

usually begin by constructing a model of the environment to be secured. The model is actually a

representation of the policy the operating system will enforce. Designers compare the model with

the system requirements to make sure that the overall system functions are not compromised or

degraded by the security needs. Then, they study different ways of enforcing that security. In the

second part of this chapter we consider several different models for operating system security.

3. Design. After having selected a security model, designers choose a means to implement

it. Thus, the design involves both what the trusted operating system is (that is, itsintended

functionality) and how it is to be constructed (its implementation). The third major section of this

chapter addresses choices to be made during development of a trusted operating system.

4. Trust. Because the operating system plays a central role in enforcing security, we (as developers

and users) seek some basis (assurance) for believing that it will meet our expectations. Our trust in

the system is rooted in two aspects: features (the operating system has all the necessary functionality

needed to enforce the expected security policy) and assurance (the operating system has been

implemented in such a way that we have confidence it will enforce the security policy correctly and

effectively). In the fourth part of this chapter we explore what makes a particular design or

implementation worthy of trust.

2.10 SECURITY POLICIES

To know that an operating system maintains the security we expect, we must be able tostate its

security policy. A security policy is a statement of the security we expect the system to enforce.

An operating system (or any other piece of a trusted system) can be trusted only in relation to its

security policy; that is, to the security needs the system is expected to satisfy.

Military Security Policy

Military security policy is based on protecting classified information. Each piece ofinformation is

ranked at a particular sensitivity level, such as unclassified, restricted, confidential, secret, or top

secret. The ranks or levels form a hierarchy, and they reflect an increasing order of sensitivity.

Commercial Security Policies

Commercial enterprises have significant security concerns. They worry that industrial espionage will

reveal information to competitors about new products under development. Likewise, corporations

are often eager to protect information about the details of corporate finance. So even though the

commercial world is usually less rigidly and less hierarchically

structured than the military world, we still find many of the same concepts in commercial security

policies. For example, a large organization, such as a corporation or a university, may

be divided into groups or departments, each responsible for a number of disjoint projects. There

may also be some corporate-level responsibilities, such as accounting and personnel activities.

Data items at any level may have different degrees of sensitivity, such as public, proprietary,

or internal; here, the names may vary among organizations, and no universal hierarchy

applies.

 2.11 MODELS OF SECURITY

In security and elsewhere, models are often used to describe, study, or analyze a particular situation or

relationship. McLean gives a good overview of models for security. In particular, security models

are used to

 test a particular policy for completeness and consistency

 document a policy help conceptualize and design an implementation

 check whether an implementation meets its requirements

We assume that some access control policy dictates whether a given user can access a particular

object. We also assume that this policy is established outside any model. That is, a policy

decision determines whether a specific user should have access to a specific object; the model is

only a mechanism that enforces that policy. Thus, we begin studying models by considering

simple ways to control access by one user.

Multilevel Security

Ideally, we want to build a model to represent a range of sensitivities and to reflect the need to

separate subjects rigorously from objects to which they should not have access. For instance,

consider an election and the sensitivity of data involved in the voting process. Thenames of the

candidates are probably not sensitive. If the results have not yet been released,

the name of the winner is somewhat sensitive. If one candidate received an embarrassingly low

number of votes, the vote count may be more sensitive. Finally, the way a particular individual

voted is extremely sensitive. Users can also be ranked by the degree of sensitivity of information

to which they can have access. For obvious reasons, the military has developed extensive

procedures for securing information.

A generalization of the military model of information security has also been adopted as a model of

data security within an operating system. Bell and La Padula [BEL73] were first to describe the

properties of the military model in mathematical notation, and Denning firstformalized the

structure of this model. In 2005, Bell [BEL05] returned to the original model to highlight its

contribution to computer security. He observed that the model demonstrated the need to

understand security requirements before beginning system design, build security into not onto the

system, develop a security toolbox, and design the system to protect itself. The generalized model

is called the lattice model of security because its elements form a mathematical structure called a

lattice. In this section, we describe the military example and then use it to explain the lattice

model.

BellLaPadula Confidentiality Model

The Bell and La Padula model [BEL73] is a formal description of the allowable paths of information

flow in a secure system. The model's goal is to identify allowable communication when

maintaining secrecy is important. The model has been used to define security requirements for

systems concurrently handling data at different sensitivity levels. This model is a

formalization of the military security policy and was central to the U.S. Department of

Defense's evaluation criteria, described later in this chapter.

We are interested in secure information flows because they describe acceptable connections between

subjects and objects of different levels of sensitivity. One purpose for security- levelanalysis is to

enable us to construct systems that can perform concurrent computation on data at two different

sensitivity levels. For example, we may want to use one machine for top- secret and confidential

data at the same time. The programs processing top-secret data would be prevented from leaking

top-secret data to the confidential data, and the confidential users would be prevented from

accessing the top-secret data. Thus, the BellLaPadula model is useful as the basis for the design of

systems that handle data of multiple sensitivities.

To understand how the BellLaPadula model works, consider a security system with the following

properties. The system covers a set of subjects S and a set of objects O. Each subject s in S and

each object o in O has a fixed security class C(s) and C(o) (denoting clearance and

classification level). The security classes are ordered by a relation . (Note: The classes may

form a lattice, even though the BellLaPadula model can apply to even less restricted cases.)

Two properties characterize the secure flow of information.

Simple Security Property. A subject s may have read access to an object o only if C(o)=< C (s).

In the military model, this property says that the security class (clearance) of someone receiving a

piece of information must be at least as high as the class (classification) of the information.

*-Property (called the "star property"). A subject s who has read access to an object o may have

write access to an object p only if C(o) =<C(p).

In the military model, this property says that the contents of a sensitive object can be written only to

objects at least as high.

In the military model, one interpretation of the *-property is that a person obtaining information at one

level may pass that information along only to people at levels no lower than the level of the

information. The *-property prevents write-down, which occurs when a subject with access to

high-level data transfers that data by writing it to a low-level object.

Literally, the *-property requires that a person receiving information at one level not talk with people

cleared at levels lower than the level of the informationnot even about the weathera This example

points out that this property is stronger than necessary to ensure security; the same is also true in

computing systems. The BellLaPadula model is extremely conservative: It ensures security even

at the expense of usability or other properties.

Biba Integrity Model

The BellLaPadula model applies only to secrecy of information: The model identifies paths that

could lead to inappropriate disclosure of information. However, the integrity of data is

important, too. Biba constructed a model for preventing inappropriate modification of data.

The Biba model is the counterpart (sometimes called the dual) of the BellLaPadula model.

Bibadefines "integrity levels," which are analogous to the sensitivity levels of the

BellLaPadulamodel. Subjects and objects are ordered by an integrity classification scheme,

denoted I(s) and I(o). The properties are

Simple Integrity Property. Subject s can modify (have write access to) object o only if I(s)

>=I(o)

Integrity *-Property. If subject s has read access to object o with integrity level I(o), s can

havewrite access to object p only if I(o) >=I(p).

2.12 TRUSTED O.S. DESIGN

Operating systems by themselves (regardless of their security constraints) are very difficult todesign.

They handle many duties, are subject to interruptions and context switches, and mustminimize

overhead so as not to slow user computations and interactions. Adding theresponsibility for

security enforcement to the operating system substantially increases thedifficulty of designing an

operating system.

Nevertheless, the need for effective security is becoming more pervasive, and good

softwareengineering principles tell us that it is better to design the security in at the beginning than

toshoehorn it in at the end. Thus, thissection focuses on the design of operating systems for a high

degree of security. First, weexamine the basic design of a standard multipurpose operating

system. Then, we considerisolation, through which an operating system supports both sharing and

separating userdomains. We look in particular at the design of an operating system's kernel; how

the kernel isdesigned suggests whether security will be provided effectively. We study two

differentinterpretations of the kernel, and then we consider layered or ring-structured designs.

Trusted System Design Elements

That security considerations pervade the design and structure of operating systems implies twothings.

First, an operating system controls the interaction between subjects and objects, sosecurity must

be considered in every aspect of its design. That is, the operating system

design must include definitions of which objects will be protected in what way, which subjects will

have access and at what levels, and so on. There must be a clear mapping from the security

requirements to the design, so that all developers can see how the two relate. Moreover, once a

section of the operating system has been designed, it must be checked to see that the degree of

security that it is supposed to enforce or provide has actually been designed correctly. This

checking can be done in many ways, including formal reviews or simulations.

Again, a mapping is necessary, this time from the requirements to design to tests so that

developers can affirm that each aspect of operating system security has been tested and

shown to work correctly.

Second, because security appears in every part of an operating system, its design and implementation

cannot be left fuzzy or vague until the rest of the system is working and being tested. It is

extremely hard to retrofit security features to an operating system designed with inadequate

security. Leaving an operating system's security to the last minute is much like trying to install

plumbing or wiring in a house whose foundation is set, structure defined, and walls already up and

painted; not only must you destroy most of what you have built, but you may also find that the

general structure can no longer accommodate all that is needed (and so some has to be left out

or compromised). Thus, security must be an essential part of the initial design of a trusted

operating system. Indeed, the security considerations may shape many of the other design

decisions, especially for a system with complex and constraining security requirements. For the

same reasons, the security and other design principles must be carried throughout implementation,

testing, and maintenance.

Good design principles are always good for security, as we have noted above. But several important

design principles are quite particular to security and essential for building a solid, trusted

operating system. These principles have been articulated well by Saltzerand Saltzer and

Schroeder :

□ Least privilege.Each user and each program should operate by using the fewest privileges

possible. In this way, the damage from an inadvertent or malicious attack isminimized.

□ Economy of mechanism.The design of the protection system should be small, simple, and

straightforward. Such a protection system can be carefully analyzed, exhaustively tested,

perhaps verified, and relied on.

□ Open design.The protection mechanism must not depend on the ignorance of potential attackers;

the mechanism should be public, depending on secrecy of relatively few key items, such as a

password table. An open design is also available for extensive public scrutiny, thereby providing

independent confirmation of the design security.

□ Complete mediation. Every access attempt must be checked. Both direct access attempts (requests)

and attempts to circumvent the access checking mechanism should be considered, and the mechanism

should be positioned so that it cannot be circumvented.

□ Permission based. The default condition should be denial of access. A conservative designer

identifies the items that should be accessible, rather than those that should not.

□ Separation of privilege.Ideally, access to objects should depend on more than one condition, such

as user authentication plus a cryptographic key. In this way, someone who defeats one protection

system will not have complete access.

□ Least common mechanism. Shared objects provide potential channels for information flow. Systems

employing physical or logical separation reduce the risk from sharing.

□ Ease of use. If a protection mechanism is easy to use, it is unlikely to be avoided.

Although these design principles were suggested several decades ago, they are as accurate now as

they were when originally written. The principles have been used repeatedly and

successfully in the design and implementation of numerous trusted systems. More importantly, when

security problems have been found in operating systems in the past, they almost always derive

from failure to abide by one or more of these principles.

2.13 ASSURANCE IN TRUSTED O.S.

Typical Operating System Flaws

Periodically throughout our analysis of operating system security features, we have used the phrase

"exploit a vulnerability." Throughout the years,many vulnerabilities have been uncovered in many

operating systems. They have gradually been corrected, and the body of knowledge about likely

weak spots has grown.

Known Vulnerabilities

In this section, we discuss typical vulnerabilities that have been uncovered in operating systems. Our

goal is not to provide a "how-to" guide for potential penetrators of operating systems. Rather, we

study these flaws to understand the careful analysis necessary in designing and testing

operating systems. User interaction is the largest single source of operating system

vulnerabilities, for several reasons:

□ The user interface is performed by independent, intelligent hardware subsystems. The

humancomputer interface often falls outside the security kernel or security restrictions

implemented by an operating system.

□ Code to interact with users is often much more complex and much more dependent on the

specific device hardware than code for any other component of the computing system. For these

reasons, it is harder to review this code for correctness, let alone to verify it formally.

□ User interactions are often character oriented. Again, in the interest of fast data transfer, the

operating systems designers may have tried to take shortcuts by limiting the number of instructions

executed by the operating system during actual data transfer. Sometimes the instructions

eliminated are those that enforce security policiesas each character is transferred. A second prominent

weakness in operating system security reflects an ambiguity in access policy. On one hand, we want

to separate users and protect their individual resources. On

the other hand, users depend on shared access to libraries, utility programs, common data, and

system tables. The distinction between isolation and sharing is not always clear at the policy

level, so the distinction cannot be sharply drawn at implementation.

A third potential problem area is incomplete mediation. Recall that Saltzerrecommended an operating

system design in which every requested access was checked for proper authorization. However,

some systems check access only once per user interface operation, process execution, or machine

interval. The mechanism is available to implement full protection, but the policy decision on

when to invoke the mechanism is not complete.

Therefore, in the absence of any explicit requirement, system designers adopt the "most efficient"

enforcement; that is, the one that will lead to the least use of machine resources.

Generality is a fourth protection weakness, especially among commercial operating systems for large

computing systems. Implementers try to provide a means for users to customize their

operating system installation and to allow installation of software packages written by

other companies. Some of these packages, which themselves operate as part of the operating system,

must execute with the same access privileges as the operating system. For example, there are

programs that provide stricter access control than the standard control available from the

operating system. The "hooks" by which these packages are installed are also trapdoors for any

user to penetrate the operating system. Thus, several well-known points of security weakness are

common to many commercial operating systems. Let us consider several examples of actual

vulnerabilities that have been exploited to penetrate operating systems.

Testing

Testing is the most widely accepted assurance technique. As Boebert observes, conclusions from

testing are based on the actual product being evaluated, not on some abstraction or precursor of

the product. This realism is a security advantage. However, conclusions based on testing are

necessarily limited, for the following reasons:

 Testing can demonstrate the existence of a problem, but passing tests does not demonstrate
the absence of problems.

 Testing adequately within reasonable time or effort is difficult because the combinatorial

explosion of inputs and internal states makes testing very complex.

 Testing based only on observable effects, not on the internal structure of a product, does not
ensure any degree of completeness.

 Testing based on the internal structure of a product involves modifying the product by adding

code to extract and display internal states. That extra functionality affects the product's

behavior and can itself be a source of vulnerabilities or mask other vulnerabilities.

 Testing real-time or complex systems presents the problem of keeping track of all states and

triggers. This problem makes it hard to reproduce and analyze problems reported as testers

proceed.

Formal Verification

The most rigorous method of analyzing security is through formal verification, which was

introduced in Chapter 3. Formal verification uses rules of mathematical logic to demonstrate that

a system has certain security properties. In formal verification, the operating system is modeled

and the operating system principles are described as assertions. The collection of models and

assertions is viewed as a theorem, which is then proven. The theorem asserts that the operating

system is correct. That is, formal verification confirms that the operating system provides the

security features it should and nothing else.

Proving correctness of an entire operating system is a formidable task, often requiring months or even

years of effort by several people. Computer programs called theorem provers can assist in this

effort, although much human activity is still needed.

Validation

Formal verification is a particular instance of the more general approach to assuring correctness:

verification. Validation is the counterpart to verification, assuring that the system developers have

implemented all requirements. Thus, validation makes sure that the

developer is building the right product (according to the specification), and verification checks the

quality of the implementation . There are several different ways to validate an operating system.

□ Requirements checking. One technique is to cross-check each operating system requirement with

the system's source code or execution-time behavior. The goal is to demonstrate that the system does

each thing listed in the functional requirements. This process is a narrow one, in the sense that it

demonstrates only that the system does everything it should do. In security, we are equally concerned

about prevention: making sure the system does not do the things it is not supposed to do.

Requirements checking seldom addresses this aspect of requirements compliance.

□ Design and code reviews. Design and code reviews usually address system correctness (that is,

verification). But a review can also address requirements implementation. To support validation, the

reviewers scrutinize the design or the code to ensure traceability from each requirement to design and

code components, noting problems along the way (including faults, incorrect assumptions, incomplete

or inconsistent behavior, or faulty logic). The success of this process depends on the rigor of the

review.

□ System testing. The programmers or an independent test team select data to check the system.

These test data can be organized much like acceptance testing, so behaviors and data expected from

reading the requirements document can be confirmed in the actual running of the system. The

checking is done in a methodical manner to ensure completeness.

2.14 DIGITAL SIGNATURE

A digital signature is a mathematical scheme for demonstrating the authenticity of a digital message

or document. A valid digital signature gives a recipient reason to believe that the message was

created by a known sender, such that the sender cannot deny having sent the message

(authentication and non-repudiation) and that the message was not altered in transit (integrity).

Digital signatures are commonly used for software distribution, financial transactions, and in

other cases where it is important to detect forgery or tampering.

Digital signatures are often used to implement electronic signatures, a broader term that refers to any

electronic data that carries the intent of a signature, but not all electronic signatures use digital

signatures. In some countries, including the United States, India, Brazil, and members of the

European Union, electronic signatures have legal significance.

Digital signatures employ a type of asymmetric cryptography. For messages sent through a nonsecure

channel, a properly implemented digital signature gives the receiver reason to believe the message

was sent by the claimed sender. In many instances, common with Engineering companies for

example, digital seals are also required for another layer of validation and security. Digital seals

and signatures are equivalent to handwritten signatures and stamped seals.[5] Digital signatures are

equivalent to traditional handwritten signatures in many respects, but properly implemented

digital signatures are more difficult to forge than the handwritten type. Digital signature schemes,

in the sense used here, are cryptographically based, and must be implemented properly to be

effective. Digital signatures can also provide non-repudiation, meaning that the signer cannot

successfully claim they did not sign

http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Non-repudiation
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Electronic_signature
http://en.wikipedia.org/wiki/European_Union
http://en.wikipedia.org/wiki/Asymmetric_key_algorithm
http://en.wikipedia.org/wiki/Digital_signature#cite_note-5
http://en.wikipedia.org/wiki/Non-repudiation

a message, while also claiming their private key remains secret; further, some non- repudiation

schemes offer a time stamp for the digital signature, so that even if the private key is exposed,

the signature is valid. Digitally signed messages may be anything representable as a bitstring:

examples include electronic mail, contracts, or a message sent via some other cryptographic

protocol.

We are all familiar with the concept of a signature. We sign a document to show that it originated

from us or was approved by us. The signature is proof to the recipient that the document comes

from the correct entity. When a customer signs a check to himself, the bank needs to be sure that

the check is issued by that customer and nobody else. In other words, a signature on a document,

when verified, is a sign of authentication; the document is authentic. Consider a painting signed

by an artist. The signature on the art, if authentic, means that the painting is probably authentic.

When Alice sends a message to Bob, Bob needs to check the authenticity of the sender; he needs to be

sure that the message comes from Alice and not Eve. Bob can ask Alice to sign the message

electronically. In other words, an electronic signature can prove the authenticity of Alice as the

sender of the message. We refer to this type of signature as a digital signature.

Comparison

Before we continue any further, let us discuss the differences between two types of signatures:

conventional and digital.

Inclusion

A conventional signature is included in the document; it is part of the document. When we write a

check, the signature is on the check; it is not a separate document. On the other hand, when we

sign a document digitally, we send the signature as a separate document. The sender sends two

documents: the message and the signature. The recipient receives both documents and verifies

that the signature belongs to the supposed sender. If this is proved, the message is kept; otherwise,

it is rejected.

Verification Method

The second difference between the two types of documents is the method of verifying the signature.

In conventional signature, when the recipient receives a document, she compares the signature on

the document with the signature on file. If they are the same, the document is authentic. The

recipient needs to have a copy of this signature on file for comparison. In digital signature, the

recipient receives the message and the signature. A copy of the signature is not stored anywhere.

The recipient needs to apply a verification technique to the combination of the message and the

signature to verify the authenticity.

Relationship

In conventional signature, there is normally a one-to-many relationship between a signatureand

documents. A person, for example, has a signature that is used to sign

http://en.wikipedia.org/wiki/Private_key
http://en.wikipedia.org/wiki/Bitstring
http://en.wikipedia.org/wiki/Electronic_mail
http://en.wikipedia.org/wiki/Contract
http://en.wikipedia.org/wiki/Cryptographic_protocol
http://en.wikipedia.org/wiki/Cryptographic_protocol

manychecks, many documents, etc. In digital signature, there is a one-to-one relationshipbetween a

signature and a message. Each message has its own signature. The signatureof one message

cannot be used in another message. If Bob receives two messages, oneafter another, from Alice,

he cannot use the signature of the first message to verify thesecond. Each message needs a new

signature.

Duplicity

Another difference between the two types of signatures is a quality called duplicity. In conventional

signature, a copy of the signed document can be distinguished from the original one on file. In

digital signature, there is no such distinction unless there is a factor of time (such as a timestamp)

on the document. For example, suppose Alice sends a document instructing Bob to pay Eve. If

Eve intercepts the document and the signature, she can resend it later to get money again from

Bob.

Need for Keys

In conventional signature a signature is like a private "key" belonging to the signer of the document.

The signer uses it to sign a document; no one else has this signature. The copy of the signature is

on file like a public key; anyone can use it to verify a document, to compare it to the original

signature.

In digital signature, the signer uses her private key, applied to a signing algorithm, to sign the

document. The verifier, on the other hand, uses the public key of the signer, applied to the

verifying algorithm, to verify the document. Can we use a secret (symmetric) key to both sign and

verify a signature? The answer is no for several reasons. First, a secret key is known only between

two entities (Alice and Bob, for example). So if Alice needs to sign another document and send it

to Ted, she needs to use another secret key. Second, as we will see, creating a secret key for a

session involves authentication, which normally uses digital signature. We have a vicious cycle.

Third, Bob could use the secret key between himself and Alice, sign a document, send it to Ted,

and pretend that it came from Alice.

Process

Digital signature can be achieved in two ways: signing the document or signing a digest of the

document.

Signing the Document

Probably, the easier, but less efficient way is to sign the document itself. Signing a document is

encrypting it with the private key of the sender; verifying the document is decrypting it with the

public key of the sender.

We should make a distinction between private and public keys as used in digital signature and

public and private keys as used for confidentiality. In the latter, the private and public keys of the

receiver are used in the process. The sender uses the public key of the receiver to encrypt; the

receiver uses his own private key to decrypt. In digital signature, the private and public keys of

the sender are used. The sender uses her private key; the receiver uses the public key of the

sender.

Signing the Digest

We mentioned that the public key is very inefficient in a cryptosystem if we are dealing

with long messages. In a digital signature system, our messages are normally long, but we have to

use public keys. The solution is not to sign the message itself; instead, we sign a

digest of the message. As we learned, a carefully selected message digest has a one-to-one

relationship with the message. The sender can sign the message digest, and the receiver can verify

the message digest. The effect is the same.

A digest is made out of the message at Alice's site. The digest then goes through the signing process

using Alice's private key. Alice then sends the message and the signature to Bob.

At Bob's site, using the same public hash function, a digest is first created out of the received

message. Calculations are done on the signature and the digest. The verifying process also applies

criteria on the result of the calculation to determine the authenticity of the signature. If authentic,

the message is accepted; otherwise, it is rejected.

Services

A digital signature can provide three services: message integrity, message authentication, and

nonrepudiation. Note that a digital signature scheme does not provide confidential

communication. If confidentiality is required, the message and the signature must be encrypted

using either a secret-key or public-key cryptosystem.

Message Integrity

The integrity of the message is preserved even if we sign the whole message because we cannot get

the same signature if the message is changed. The signature schemes today use a hash function in

the signing and verifying algorithms that preserve the integrity of the message.

Message Authentication

A secure signature scheme, like a secure conventional signature (one that cannot be easily copied),

can provide message authentication. Bob can verify that the message is sent by Alice because

Alice's public key is used in verification. Alice's public key cannot create the same signature as

Eve's private key.

Message Nonrepudiation

If Alice signs a message and then denies it, can Bob later prove that Alice actuallysigned it? For

example, if Alice sends a message to a bank (Bob) and asks to transfer $10,000 from her account

to Ted's account, can Alice later deny that she sent this message? With the scheme we have

presented so far, Bob might have a problem. Bob must keep the signature on file and later use

Alice's public key to create the original message to prove the message in the file and the newly

created message are the same. This is not feasible because Alice may have changed her

private/public key during this time; she may also claim that the file containing the signature is not

authentic.

2.15 AUTHENTICATION

In the context of computer systems, authentication is a process that ensures and confirms a user’s

identity. Authentication is one of the five pillars of information assurance (IA). The other four are

integrity, availability, confidentiality and nonrepudiation.

Authentication begins when a user tries to access information. First, the user must prove his access

rights and identity. When logging into a computer, users commonly enter usernames and

passwords for authentication purposes. This login combination, which must be assigned to each

user, authenticates access. However, this type of authentication can be circumvented by hackers.

A better form of authentication, biometrics, depends on the user’s presence and biological makeup

(i.e., retina or fingerprints). This technology makes it more difficult for hackers to break into

computer systems.

The Public Key Infrastructure (PKI) authentication method uses digital certificates to prove a

user’s identity. There are other authentication tools, too, such as key cards and USB tokens. One of

the greatest authentication threats occurs with email, where authenticity is often difficult to

verify. For example, unsecured emails often appear legitimate.

2.16 SECRET SHARING

Secret sharing (also called secret splitting) refers to methods for distributing a secret

amongst a group of participants, each of whom is allocated a share of the secret. The secret can be

reconstructed only when a sufficient number, of possibly different types, of shares are combined

together; individual shares are of no use on their own.

In one type of secret sharing scheme there is one dealer and n players. The dealer gives a share of the

secret to the players, but only when specific conditions are fulfilled will the players be able to

reconstruct the secret from their shares. The dealer accomplishes this by giving each player a

share in such a way that any group of t (for threshold) or more players can together reconstruct

the secret but no group of fewer thant players can. Such a system is called a (t, n)-threshold

scheme (sometimes it is written as an (n, t)-threshold scheme).

Importance of secure sharing

Secret sharing schemes are ideal for storing information that is highly sensitive and highly important.

Examples include: encryption keys, missile launch codes, and numbered bank accounts. Each of

these pieces of information must be kept highly confidential, as their exposure could be

disastrous, however, it is also critical that they should not be lost. Traditional methods for

encryption are ill-suited for simultaneously achieving high levels of confidentiality and reliability.

This is because when storing the encryption key, one must choose between keeping a single copy

of the key in one location for maximum secrecy, or keeping multiple copies of the key in different

locations for greater reliability. Increasing reliability of the key by storing multiple copies lowers

confidentiality by creating additional attack vectors; there are more opportunities for a copy to fall

into the wrong hands. Secret sharing schemes address this problem, and allow arbitrarily high

levels of confidentiality and reliability to be achieved.

Secure vs Insecure sharing

A secure secret sharing scheme distributes shares so that anyone with fewer than t shares has no extra

information about the secret than someone with 0 shares.

Consider for example the secret sharing scheme in which the secret phrase "password" is divided into

the shares "pa------," "--ss----," "----wo--," and " rd,". A person with 0 shares

knows only that the password consists of eight letters. He would have to guess the password from 268

= 208 billion possible combinations. A person with one share, however, would have to guess only

the six letters, from 266 = 308 million combinations, and so on as more persons collude.

Consequently this system is not a "secure" secret sharing scheme, because a player with fewer

than t secret-shares is able to reduce the problem of obtaining the inner secret without first

needing to obtain all of the necessary shares.

In contrast, consider the secret sharing scheme where X is the secret to be shared, Pi are public

asymmetric encryption keys and Qi their corresponding private keys. Each player J is provided

with {P1(P2(...(PN(X)))), Qj}. In this scheme, any player with a private key 1 can remove the
outer layer of encryption, a player with keys 1 and 2 can remove the first and second layer, and so
on. A player with fewer than N keys can never fully reach the secret X

http://en.wikipedia.org/wiki/Secrecy
http://en.wikipedia.org/wiki/Secrecy
http://en.wikipedia.org/wiki/Numbered_bank_account
http://en.wikipedia.org/wiki/Numbered_bank_account
http://en.wikipedia.org/wiki/Asymmetric_encryption

without first needing to decrypt a public-key-encrypted blob for which he does not have the

corresponding private key - a problem that is currently believed to be computationally infeasible.

Additionally we can see that any user with all N private keys is able to decrypt all of the outer

layers to obtain X, the secret, and consequently this system is a secure secret distribution system.

THREATS IN NETWORK

Main aims of threats are to compromise confidentiality, integrity applied against data, software,

hardware by nature accidents, non-malicious humans and malicious attackers.

What Makes A Network Vulnerable?

1. Anonymity

2. Many Points Of Attack

3. Sharing

4. Complexity Of System

Threat Precursors:

1. Port scan

2. Social Engineering

3. Reconnaissance

4. Operating System and Application fingerprinting

5. Bulletin Boards and chats

6. Availability of Documentation

Threats In Transit: Eavesdropping and Wiretapping

The term eavesdrop implies overhearing without expanding any extra effort. For example we can say

that an attacker is eavesdropping by monitoring all traffic passing through a node.

The more hostile term is wiretap, which means intercepting communication through some

effort.

Choices of wiretapping are:

1. Cable

2. Microwave

3. Satellite Communication

4. Optical Fiber

5. Wireless

From, a security stand point we should assume all communication links between network nodes that

can broken. For this reason commercial network users employ encryption to protect the

confidentiality of their communication.

Protocol Flaws:

Each protocol is identified by its Request For Comment (RFC) number. In TCP, the sequence number

of the client increments regularly which can be easily guessed and also which will be the next

number.

Impersonation:

In many instances, there is an easier way than wiretapping for obtaining information on a network:

impersonate another person or process.

In impersonation, an attacker has several choices:

 Guess the identity and authentication details of the target

 Disable authentication mechanism at the target computer

 Use a target that will not be authenticated

 Use a target whose authentication data are known

Spoofing:

Obtaining the network authentication credentials of an entity(a user, an account, a process, a node, a

device) permits an attacker to create a full communication under the entity’s identity. Examples of

spoofing are masquerading, session hijacking, and man-in-the-middle attacks.

 In a masquerade one host pretends to be another.

 Session hijacking is intercepting and carrying on a session begun by another entity.

 Man-in-the-middle attack is a similar form of attack, in which one entity intrudes between

two others.

Message Confidentiality Threats:

An attacker can easily violate message confidentiality (and perhaps integrity) because of the public

nature of networks. Eavesdropping and impersonation attacks can lead to a confidentiality or

integrity failure. Here we consider several other vulnerabilities that can affect confidentiality.

1. Misdelivery

2. Exposure

3. Traffic Flow Analysis

Message Integrity Threats:

In many cases, the integrity or correctness of a communication is at least as important as its

confidentiality. In fact for some situations, such as passing authentication data, the integrity of

the communication is paramount. Threats based upon failures of integrity in communication

 Falsification of messages

 Noise

Web Site Defacement:

One of the most widely known attacks is the web site defacement attack. Because of the large number

of sites that have been defaced and the visibility of the result, the attacks are often reported in the

popular press. A defacement is common not only because of its visibility but also because of the

ease with which one can be done.

The website vulnerabilities enable attacks known as buffer overflows, dot- dot

problems, application code errors, and server side include problems.

Denial of Service:

Availability attacks, sometimes called denial-of-service or DOS attacks, are much more significant in

networks than in other contexts. There are many accidental and malicious threats to availability or

continued service. There are many accidental and malicious threats to availability or continued

service.

1) Transmission Failure

2) Connection Flooding

3) Echo-Chargen

4) Ping of Death

5) Smurf

6) Syn Flood

7) Teardrop

8) Traffic Redirection

9) DNS Attacks

Threats in Active or Mobile Code:

Active code or mobile code is a general name for code that is pushed to the client for execution. Why

should the web server waste its precious cycles and bandwidth doing simple work that the client's

workstation can do? For example, suppose you want your web site to have bears dancing across

the top of the page. To download the dancing bears, you could download a new image for each

movement the bears take: one bit forward, two bits forward, and so forth. However, this approach

uses far too much server time and bandwidth to compute the positions and download new

images. A more efficient use of (server) resources is to download a program that runs on the

client's machine and implements the movement of the bears.

Network Security Controls

The list of security attacks is long, and the news media carry frequent accounts of serious security

incidents.

Security Threat Analysis:

The three steps of a security threat analysis in other situations are described here. First, we scrutinize

all the parts of a system so that we know what each part does and how it interacts with other parts.

Next, we consider possible damage to confidentiality, integrity, and availability. Finally, we

hypothesize the kinds of attacks that could cause this damage. We can take the same steps with a

network. We begin by looking at the individual parts of a network:

All the threats are summarized with a list as

 Intercepting data in traffic

 Accessing programs or data at remote hosts
 Modifying programs or data at remote hosts
 Modifying data in transit
 Inserting communications

 Impersonating a user

 Inserting a repeat of a previous communication

 Blocking selected traffic
 Blocking all traffic

 Running a program at a remote host

Design and Implementation:

Architecture:

As with so many of the areas we have studied, planning can be the strongest control. In

particular, when we build or modify computer-based systems, we can give some thought to

their overall architecture and plan to "build in" security as one of the key constructs. Similarly,

the architecture or design of a network can have a significant effect on its security. The main areas

to cover are

 Segmentation

 Redundancy

 Single point of failure

 Mobile agents

Encryption:

Encryption is powerful for providing privacy, authenticity, integrity, and limited access to data.

Because networks often involve even greater risks, they often secure data with encryption,

perhaps in combination with other controls. There are 2 types of encryption scheme exists:

 Link encryption (data are encrypted just before the system places them on the physical

communications link)

 End-to-end encryption (provides security from one end of a transmission to the other)

Content Integrity:

Content integrity comes as a bonus with cryptography. No one can change encrypted data in a

meaningful way without breaking the encryption. This does not say, however, that encrypted data

cannot be modified. Changing even one bit of an encrypted data stream affects the result after

decryption, often in a way that seriously alters the resulting plaintext. We need to consider three

potential threats:

□ Malicious modification that changes content in a meaningful way

□ Malicious or non-malicious modification that changes content in a way that is not

necessarily meaningful

□ non-malicious modification that changes content in a way that will not be detected

Encryption addresses the first of these threats very effectively. To address the others, we can use

other controls.

Strong Authentication:

In the network case, however, authentication may be more difficult to achieve securely because of the

possibility of eavesdropping and wiretapping, which are less common in non- networked

environments. Also, both ends of a communication may need to be authenticated to each other.

Here the main issues are

 One time password

 Challenge response systems

 Digital distributed authentication

Access Controls:

Authentication deals with the who of security policy enforcement; access controls enforce the

what and how.

ACLs on Routers

Routers perform the major task of directing network traffic either to sub-networks they control or to

other routers for subsequent delivery to other sub-networks. Routers convert external IP addresses

into internal MAC addresses of hosts on a local sub-network. Suppose a host is being spammed

(flooded) with packets from a malicious rogue host. Routers can be configured with access control

lists to deny access to particular hosts from particular hosts. So, a router could delete all packets

with a source address of the rogue host and a destination address of the target host.

Alarms and Alerts:

The logical view of network protection looks like the figure below, in which both a router and a

firewall provide layers of protection for the internal network. Now let us add one more layer to

this defense.

Fig. Layered network protection

Honey Pot: (A computer system open for attackers)

A honey pot has no special features. It is just a computer system or a network segment, loaded with

servers and devices and data. It may be protected with a firewall, although you want the attackers

to have some access. There may be some monitoring capability, done carefully so that the

monitoring is not evident to the attacker.

We put up a honey pot for several reasons:

□ To watch what attackers do, in order to learn about new attacks (so that you can strengthen your
defenses against these new attacks)

□ To lure an attacker to a place in which you may be able to learn enough to identify and stop the

attacker

□ To provide an attractive but diversionary playground, hoping that the attacker will leave your
real system alone

Firewalls

Firewalls were officially invented in the early 1990s, but the concept really reflects the reference

monitor from two decades earlier.

What is a Firewall?

A firewall is a device that filters all traffic between a protected or "inside" network and a less

trustworthy or "outside" network. Usually a firewall runs on a dedicated device; because it is a

single point through which traffic is channeled, performance is important, which means non-

firewall functions should not be done on the same machine. Because a firewall is executable code,

an attacker could compromise that code and execute from the firewall's device. Thus, the fewer

pieces of code on the device, the fewer tools the attacker would have by compromising the

firewall. Firewall code usually runs on a proprietary or carefully minimized operating system. The

purpose of a firewall is to keep "bad" things outside a protected environment. To accomplish that,

firewalls implement a security policy that is specifically designed to address what bad things

might happen. For example, the policy might be to prevent any access from outside (while still

allowing traffic to pass from the inside to the outside). Alternatively, the policy might permit

accesses only from certain places, from certain users, or for certain activities. Part of the challenge

of protecting a network with a firewall is determining which security policy meets the needs of the

installation.

Design of Firewalls:

A reference monitor must be

□ Always invoked

□ Tamperproof

□ Small and simple enough for rigorous analysis

A firewall is a special form of reference monitor. By carefully positioning a firewall within a network,

we can ensure that all network accesses that we want to control must pass through it. This

restriction meets the "always invoked" condition. A firewall is typically well isolated, making it

highly immune to modification. Usually a firewall is implemented on a separate computer, with

direct connections only to the outside and inside networks. This isolation is

expected to meet the "tamperproof" requirement. And firewall designers strongly recommend keeping

the functionality of the firewall simple.

Types of Firewalls:

Firewalls have a wide range of capabilities. Types of firewalls include

 Packet filtering gateways or screening routers

 Stateful inspection firewalls

 Application proxie

 Guards

 Personal firewalls

Packet Filtering Gateway:

A packet filtering gateway or screening router is the simplest, and in some situations, the most

effective type of firewall. A packet filtering gateway controls access to packets on the basis of

packet address (source or destination) or specific transport protocol type (such as HTTP web

traffic). As described earlier in this chapter, putting ACLs on routers may severely impede their

performance. But a separate firewall behind (on the local side) of the router can screen traffic

before it gets to the protected network. Figure 7-34 shows a packet filter that blocks access from

(or to) addresses in one network; the filter allows HTTP traffic but blocks traffic using the Telnet

protocol.

Stateful Inspection Firewall:

Filtering firewalls work on packets one at a time, accepting or rejecting each packet and moving on to

the next. They have no concept of "state" or "context" from one packet to the next. A stateful

inspection firewall maintains state information from one packet to another in the input stream.

One classic approach used by attackers is to break an attack into multiple packets by forcing

some packets to have very short lengths so that a firewall cannot detect the signature of an attack

split across two or more packets. (Remember that with the TCP protocols, packets can arrive in

any order, and the protocol suite is responsible for reassembling the packet stream in proper order

before passing it along to the application.) A stateful inspection firewall would track the sequence

of packets and conditions from one packet to another to thwart such an attack.

Application Proxy

Packet filters look only at the headers of packets, not at the data inside the packets. Therefore, a packet

filter would pass anything to port 25, assuming its screening rules allow inbound

connections to that port. But applications are complex and sometimes contain errors. Worse,

applications (such as the e-mail delivery agent) often act on behalf of all users, so they require

privileges of all users (for example, to store incoming mail messages so that inside users can read

them). A flawed application, running with all users' privileges, can cause much damage. An

application proxy gateway, also called a bastion host, is a firewall that simulates the (proper)

effects of an application so that the application receives only requests to act properly. A proxy

gateway is a two-headed device: It looks to the inside as if it is the outside (destination)

connection, while to the outside it responds just as the insider would.

An application proxy runs pseudo-applications. For instance, when electronic mail

is transferred to a location, a sending process at one site and a receiving process at the destination

communicate by a protocol that establishes the legitimacy of a mail transfer and then actually

transfers the mail message. The protocol between sender and destination is carefully defined. A

proxy gateway essentially intrudes in the middle of this protocol exchange, seeming like a

destination in communication with the sender that is outside the firewall, and seeming like the

sender in communication with the real destination on the inside. The proxy in the middle has the

opportunity to screen the mail transfer, ensuring that only acceptable e-mail protocol commands

are sent to the destination.

Guard:

A guard is a sophisticated firewall. Like a proxy firewall, it receives protocol data units, interprets

them, and passes through the same or different protocol data units that achieve either the same

result or a modified result. The guard decides what services to perform on the user's behalf in

accordance with its available knowledge, such as whatever it can reliably know of the (outside)

user's identity, previous interactions, and so forth. The degree of control a guard can provide is

limited only by what is computable. But guards and proxy firewalls are similar enough that the

distinction between them is sometimes fuzzy. That is, we can add functionality to a proxy firewall

until it starts to look a lot like a guard.

Personal Firewalls:

A personal firewall is an application program that runs on a workstation to block unwanted traffic, usually

from the network. A personal firewall can complement the work of a conventional firewall by screening

the kind of data a single host will accept, or it can compensate for the lack of a regular firewall, as in

a private DSL or cable modem connection.

The personal firewall is configured to enforce some policy. For example, the user

may decide that certain sites, such as computers on the company network, are highly trustworthy,

but most other sites are not. The user defines a policy permitting download of code, unrestricted

data sharing, and management access from the corporate segment, but not from other sites.

Personal firewalls can also generate logs of accesses, which can be useful to examine in case

something harmful does slip through the firewall.

A personal firewall runs on the very computer it is trying to protect. Thus, a clever

attacker is likely to attempt an undetected attack that would disable or reconfigure the firewall for

the future. Still, especially for cable modem, DSL, and other "always on" connections, the static

workstation is a visible and vulnerable target for an ever-present attack community. A personal

firewall can provide reasonable protection to clients that are not behind a network firewall.

Comparison of Firewall types:

Packet Filtering Sateful
Inspection

Application
Proxy

Guard Personal
firewall

Simple More complex Even complex Most complex Similar to
packet filtering

Sees only
addresses and
service protocol
type

Can see either
addresses or data

Sees full data
portion of
packet

Sees full text of
communication

Can see full data
portion of
packet

Auditing
difficult

Auditing
possible

Can audit
activity

Can audit
activity

Can and usually
does audit
activity

Screens based on
connection rules

Screens based
on
information
across packetsin
either header or
data field

Screens based
on behavior of
proxies

Screens based on
interpretation of
message
contents

Typically,
screens based
on information
in
a single packet,
using header or
data

Complex
addressing rules
can make
configuration
tricky

Usually
preconfigured to
detect certain
attack signatures

Simple proxies
can substitute
for complex
addressing
rules

Complex guard
functionality can
limit assurance

Usually starts in
"deny all
inbound" mode,
to which user
adds trusted
addresses as
they appear

Intrusion Detection System:

An intrusion detection system (IDS) is a device, typically another separate computer, that monitors

activity to identify malicious or suspicious events. An IDS is a sensor, like a smoke detector, that

raises an alarm if specific things occur. A model of an IDS is shown in below figure. The

components in the figure are the four basic elements of an intrusion detection system, based on

the Common Intrusion Detection Framework of [STA96]. An IDS receives raw inputs from

sensors. It saves those inputs, analyzes them, and takes some controlling action.

Types of IDSs

The two general types of intrusion detection systems are signature based and heuristic. Signature-

based intrusion detection systems perform simple pattern-matching and report situations that

match a pattern corresponding to a known attack type. Heuristic intrusion detection systems, also

known as anomaly based, build a model of acceptable behavior and flag exceptions to that model;

for the future, the administrator can mark a flagged behavior as acceptable so that the heuristic

IDS will now treat that previously unclassified behavior as acceptable.

Intrusion detection devices can be network based or host based. A network-based IDS

is a stand-alone device attached to the network to monitor traffic throughout that network; a host-

based IDS runs on a single workstation or client or host, to protect that one host.

Signature-Based Intrusion Detection:

A simple signature for a known attack type might describe a series of TCP SYN packets sent to many

different ports in succession and at times close to one another, as would be the case for a port

scan. An intrusion detection system would probably find nothing unusual in the first SYN, say, to

port 80, and then another (from the same source address) to port 25. But as more and more ports

receive SYN packets, especially ports that are not open, this pattern reflects a possible port scan.

Similarly, some implementations of the protocol stack fail if they receive an ICMP packet with a

data length of 65535 bytes, so such a packet would be a pattern for which to watch.

Heuristic Intrusion Detection:

Because signatures are limited to specific, known attack patterns, another form of intrusion detection

becomes useful. Instead of looking for matches, heuristic intrusion detection looks for behavior

that is out of the ordinary. The original work in this area focused on the individual, trying to find

characteristics of that person that might be helpful in understanding normal and abnormal

behavior. For example, one user might always start the day by reading e-mail, write many

documents using a word processor, and occasionally back up files. These actions would be

normal. This user does not seem to use many administrator utilities. If that person tried to access

sensitive system management utilities, this new behavior might be a clue that someone else was

acting under the user's identity.

Inference engines work in two ways. Some, called state-based intrusion detection

systems, see the system going through changes of overall state or configuration. They try to detect

when the system has veered into unsafe modes. Others try to map current activity onto a model of

unacceptable activity and raise an alarm when the activity resembles the model.

These are called model-based intrusion detection systems. This approach has been extended to

networks in [MUK94]. Later work sought to build a dynamic model of behavior, to accommodate

variation and evolution in a person's actions over time. The technique compares real activity with

a known representation of normality.

Alternatively, intrusion detection can work from a model of known bad activity. For

example, except for a few utilities (login, change password, create user), any other attempt

to access a password file is suspect. This form of intrusion detection is known as misuse intrusion

detection. In this work, the real activity is compared against a known suspicious area.

Stealth Mode:

An IDS is a network device (or, in the case of a host-based IDS, a program running on a network

device). Any network device is potentially vulnerable to network attacks. How useful would an

IDS be if it itself were deluged with a denial-of-service attack? If an attacker succeeded in logging

in to a system within the protected network, wouldn't trying to disable the IDS be the next step?

To counter those problems, most IDSs run in stealth mode, whereby an IDS has two

network interfaces: one for the network (or network segment) being monitored and the other

to generate alerts and perhaps other administrative needs. The IDS uses the monitored interface as

input only; it never sends packets out through that interface. Often, the interface is configured so

that the device has no published address through the monitored interface; that is, a router cannot

route anything to that address directly, because the router does not know such a device exists. It is

the perfect passive wiretap. If the IDS needs to generate an alert, it uses only the alarm interface

on a completely separate control network.

Goals for Intrusion Detection Systems:

1. Responding to alarms:

Whatever the type, an intrusion detection system raises an alarm when it finds a match.

The alarm can range from something modest, such as writing a note in an audit log, to something

significant, such as paging the system security administrator. Particular implementations allow the

user to determine what action the system should take on what events.

In general, responses fall into three major categories (any or all of which can be used in a single

response):

□ Monitor, collect data, perhaps increase amount of data collected

□ Protect, act to reduce exposure

□ Call a human

2. False Results:

Intrusion detection systems are not perfect, and mistakes are their biggest problem. Although an IDS

might detect an intruder correctly most of the time, it may stumble in two different ways: by

raising an alarm for something that is not really an attack (called a false positive, or type I error in

the statistical community) or not raising an alarm for a real attack (a false negative, or type II

error). Too many false positives means the administrator will be less confident of the IDS's

warnings, perhaps leading to a real alarm's being ignored. But false negatives mean that real

attacks are passing the IDS without action. We say that the degree of false positives and false

negatives represents the sensitivity of the system. Most IDS implementations allow the

administrator to tune the system's sensitivity, to strike an acceptable balance between false

positives and negatives.

IDS strength and limitations:

On the upside, IDSs detect an ever-growing number of serious problems. And as we learn more about

problems, we can add their signatures to the IDS model. Thus, over time, IDSs continue to

improve. At the same time, they are becoming cheaper and easier to administer. On the downside,

avoiding an IDS is a first priority for successful attackers. An IDS that is not well defended is

useless. Fortunately, stealth mode IDSs are difficult even to find on an internal network, let alone

to compromise. IDSs look for known weaknesses, whether through patterns of known attacks or

models of normal behavior. Similar IDSs may have identical vulnerabilities, and their selection

criteria may miss similar attacks. Knowing how to evade a particular model of IDS is an

important piece of intelligence passed within the attacker community. Of course, once

manufacturers become aware of a shortcoming in their products, they try to fix it. Fortunately,

commercial IDSs are pretty good at identifying attacks. Another IDS limitation is its sensitivity,

which is difficult to measure and adjust. IDSs will never be perfect, so finding the proper

balance is critical.

In general, IDSs are excellent additions to a network's security. Firewalls block traffic

to particular ports or addresses; they also constrain certain protocols to limit their impact. But by

definition, firewalls have to allow some traffic to enter a protected area.

Watching what that traffic actually does inside the protected area is an IDS's job, which it does

quite well.

Secure Email:

We rely on e-mail's confidentiality and integrity for sensitive and important communications, even

though ordinary e-mail has almost no confidentiality or integrity. Here we investigate how to add

confidentiality and integrity protection to ordinary e-mail.

Security of email:

Sometimes we would like e-mail to be more secure. To define and implement a more secure form, we

begin by examining the exposures of ordinary e-mail.

Threats to E-mail

□ Message interception (confidentiality)

□ Message interception (blocked delivery)

□ Message interception and subsequent replay

□ Message content modification

□ Message origin modification

□ Message content forgery by outsider

□ Message origin forgery by outsider

□ Message content forgery by recipient

□ Message origin forgery by recipient

□ Denial of message transmission

Requirements and solutions:

Following protections must be taken for protection in emails

□ Message confidentiality (the message is not exposed en route to the receiver)

□ Message integrity (what the receiver sees is what was sent)

□ Sender authenticity (the receiver is confident who the sender was)

□ Non repudiation (the sender cannot deny having sent the message)

Designs:

One of the design goals for encrypted e-mail was allowing security-enhanced messages to travel as

ordinary messages through the existing Internet e-mail system. This requirement ensures that the

large existing e-mail network would not require change to accommodate security. Thus, all

protection occurs within the body of a message.

Confidentiality:

The encrypted e-mail standard works most easily as just described, using both symmetric and

asymmetric encryption. The standard is also defined for symmetric encryption only: To use

symmetric encryption, the sender and receiver must have previously established a shared

secret encryption key. The processing type ("Proc-Type") field tells what privacy enhancement

services have been applied. In the data exchange key field ("DEK-Info"), the kind of key

exchange (symmetric or asymmetric) is shown. The key exchange ("Key-Info") field contains the

message encryption key, encrypted under this shared encryption key. The field also identifies the

originator (sender) so that the receiver can determine which shared symmetric key was used. If

the key exchange technique were to use asymmetric encryption, the key exchange field would

contain the message encryption field, encrypted under the recipient's public key. Also included

could be the sender's certificate (used for determining authenticity and for generating replies). The

encrypted e-mail standard supports multiple encryption algorithms, using popular algorithms such

as DES, triple DES, and AES for message confidentiality, and RSA and Diffie-Hellman for key

exchange.

Encryption of secure e-mail:

Encrypted e-mail provides strong end-to-end security for electronic mail. Triple DES, AES, and RSA

cryptography are quite strong, especially if RSA is used with a long bit key (1024 bits or more).

The vulnerabilities remaining with encrypted e-mail come from the points not covered: the

endpoints. An attacker with access could subvert a sender's or receiver's machine, modifying the

code that does the privacy enhancements or arranging to leak a cryptographic key.

Examples of Secure E-mail:

 PGP (Pretty Good Privacy)

 S/MIME (Secure Multipurpose Internet Mail Extensions)

EXERCISES

1. The FTP protocol is relatively easy to proxy; the firewall decides, for example, whether an

outsider should be able to access a particular directory in the file system and issues a

corresponding command to the inside file manager or responds negatively to the outsider.

Other protocols are not feasible to proxy.

List three protocols that it would be prohibitively difficult or impossible to proxy. Explain your

answer.

2. How would the content of the audit log differ for a screening router versus an

application proxy firewall?

3. Cite a reason why an organization might want two or more firewalls on a single

network.

4. Firewalls are targets for penetrators. Why are there few compromises of firewalls?

not?
5. Should a network administrator put a firewall in front of a honey pot? Why or why

6. Can a firewall block attacks using server scripts, such as the attack in which the user could

change a price on an item offered by an e-commerce site? Why or why not?

7. Why does a stealth mode IDS need a separate network to communicate alarms and to accept

management commands?

8. One form of IDS starts operation by generating an alert for every action. Over time, the

administrator adjusts the setting of the IDS so that common, benign activities do not generate

alarms. What are the advantages and disadvantages of this design for an IDS?

9. Can encrypted e-mail provide verification to a sender that a recipient has read an e- mail

message? Why or why not?

10. Can message confidentiality and message integrity protection be applied to the same

message? Why or why not?

11. What are the advantages and disadvantages of an e-mail program that automatically applies

and removes protection to e-mail messages between sender and receiver?

MODULE 3

Administering Security

Security planning:

Contents of security planning:

A security plan identifies and organizes the security activities for a computing system. The plan is

both a description of the current situation and a plan for improvement. Every security plan must

address seven issues.

1. Policy, indicating the goals of a computer security effort and the willingness of the people

involved to work to achieve those goals

2. Current state, describing the status of security at the time of the plan

3. Requirements, recommending ways to meet the security goals

4. Recommended controls, mapping controls to the vulnerabilities identified in the policy and

requirements

5. Accountability, describing who is responsible for each security activity

6. Timetable, identifying when different security functions are to be done

7. Continuing attention, specifying a structure for periodically updating the security plan

1. Policy:

The policy statement should specify the following:

 The organization's goals on security. For example, should the system protect data from

leakage to outsiders, protect against loss of data due to physical disaster, protect the data's

integrity, or protect against loss of business when computing resources fail?

What is the higher priority: serving customers or securing data?

 Where the responsibility for security lies. For example, should the responsibility rest with a

small computer security group, with each employee, or with relevant managers?

 The organization's commitment to security. For example, who provides security support for

staff, and where does security fit into the organization's structure?

2. Current Security Status:

To be able to plan for security, an organization must understand the vulnerabilities to which it may be

exposed. The organization can determine the vulnerabilities by performing a risk analysis: a

careful investigation of the system, its environment, and the things that might go wrong. The risk

analysis forms the basis for describing the current status of security. The status can be expressed

as a listing of organizational assets, the security threats to the assets, and the controls in place to

protect the assets.

The status portion of the plan also defines the limits of responsibility for security. It

describes not only which assets are to be protected but also who is responsible for protecting

them. The plan may note that some groups may be excluded from responsibility; for example,

joint ventures with other organizations may designate one organization to provide security for all

member organizations. The plan also defines the boundaries of responsibility, especially when

networks are involved. For instance, the plan should clarify who provides the security for a

network router or for a leased line to a remote site.

Even though the security plan should be thorough, there will necessarily be vulnerabilities that are

not considered. These vulnerabilities are not always the result of ignorance rather, they can arise

from the addition of new equipment or data as the system evolves.

They can also result from new situations, such as when a system is used in ways not

anticipated by its designers. The security plan should detail the process to be followed when

someone identifies a new vulnerability. In particular, instructions should explain how to integrate

controls for that vulnerability into the existing security procedures.

3. Requirements:

The heart of the security plan is its set of security requirements: functional or performance demands

placed on a system to ensure a desired level of security. The requirements are usually derived

from organizational needs. Sometimes these needs include the need to conform to specific

security requirements imposed from outside, such as by a government agency or a commercial

standard.

4. Recommended Controls:

The security requirements lay out the system's needs in terms of what should be protected. The

security plan must also recommend what controls should be incorporated into the system to meet

those requirements. Throughout this book you have seen many examples of controls, so we need

not review them here. As we see later in this chapter, we can use risk analysis to create a map

from vulnerabilities to controls. The mapping tells us how the system will meet the security

requirements. That is, the recommended controls address implementation issues: how the system

will be designed and developed to meet stated security requirements.

5. Responsibility for Implementation:

A section of the security plan should identify which people are responsible for implementing the

security requirements. This documentation assists those who must coordinate their individual

responsibilities with those of other developers. At the same time, the plan makes explicit who is

accountable should some requirement not be met or some vulnerability not be addressed. That is,

the plan notes who is responsible for implementing controls when a new vulnerability is

discovered or a new kind of asset is introduced.

People building, using, and maintaining the system play many roles. Each role can take some

responsibility for one or more aspects of security. Consider, for example, the groups listed here.

□ Personal computer users may be responsible for the security of their own machines. Alternatively,

the security plan may designate one person or group to be coordinator of personal computer security.

□ Project leaders may be responsible for the security of data and computations.

6. Timetable:

A comprehensive security plan cannot be executed instantly. The security plan includes a timetable

that shows how and when the elements of the plan will be performed. These dates also give

milestones so that management can track the progress of implementation.

7. Continuing Attention:

Good intentions are not enough when it comes to security. We must not only take care in defining

requirements and controls, but we must also find ways for evaluating a system's security to be

sure that the system is as secure as we intend it to be. Thus, the security plan must call for

reviewing the security situation periodically. As users, data, and equipment change, new

exposures may develop. In addition, the current means of control may become obsolete or

ineffective (such as when faster processor times enable attackers to break an encryption

algorithm). The inventory of objects and the list of controls should periodically be scrutinized and

updated, and risk analysis performed anew.

Security Planning Team Members:

The membership of a computer security planning team must somehow relate to the different aspects

of computer security described in this book. Security in operating systems and networks requires

the cooperation of the systems administration staff. Program security measures can be understood

and recommended by applications programmers. Physical security controls are implemented by

those responsible for general physical security, both against human attacks and natural disasters.

Finally, because controls affect system users, the plan should incorporate users' views, especially

with regard to usability and the general desirability of controls.

Thus, no matter how it is organized, a security planning team should represent each of the following

groups.

□ Computer hardware group

□ System administrators

□ Systems programmers

□ Applications programmers

□ Data entry personnel

□ Physical security personnel

□ Representative users

In some cases, a group can be adequately represented by someone who is consulted at appropriate

times, rather than a committee member from each possible constituency being enlisted.

Assuring Commitment To a security plan:

After the plan is written, it must be accepted and its recommendations carried out. Acceptance by the

organization is key; a plan that has no organizational commitment is simply a plan that collects

dust on the shelf. Commitment to the plan means that security functions will be implemented

and security activities carried out. Three groups of people must contribute to making the plan a

success.

□ The planning team must be sensitive to the needs of each group affected by the plan.

□ Those affected by the security recommendations must understand what the plan means for the way

they will use the system and perform their business activities. In particular, they must see how what

they do can affect other users and other systems.

□ Management must be committed to using and enforcing the security aspects of the system.

Management commitment is obtained through understanding. But this understanding is not just a

function of what makes sense technologically; it also involves knowing the cause and the

potential effects of lack of security. Managers must also weigh tradeoffs in terms of convenience

and cost. The plan must present a picture of how cost effective the controls are, especially when

compared to potential losses if security is breached without the controls. Thus, proper

presentation of the plan is essential, in terms that relate to management as well as technical

concerns.

Management is often reticent to allocate funds for controls until the value of those controls is

explained. As we note in the next section, the results of a risk analysis can help communicate the

financial tradeoffs and benefits of implementing controls. By describing vulnerabilities in

financial terms and in the context of ordinary business activities (such as leaking data to a

competitor or an outsider), security planners can help managers understand the need for controls.

The plans we have just discussed are part of normal business. They address how a business handles

computer security needs. Similar plans might address how to increase sales or improve product

quality, so these planning activities should be a natural part of management. Next we turn to two

particular kinds of business plans that address specific security problems: coping with and

controlling activity during security incidents.

Business Continuity Plan:

A business continuity plan documents how a business will continue to function during a computer

security incident. An ordinary security plan covers computer security during normal times and

deals with protecting against a wide range of vulnerabilities from the usual sources.

A business continuity plan deals with situations having two characteristics:

 Catastrophic situations, in which all or a major part of a computing capability is suddenly
unavailable

 Long duration, in which the outage is expected to last for so long that business will suffer

There are many situations in which a business continuity plan would be helpful. Here are some

examples that typify what you might find in reading your daily newspaper:

 A fire destroys a company's entire network.

 A seemingly permanent failure of a critical software component renders the computing

system unusable.

 A business must deal with the abrupt failure of its supplier of electricity,

telecommunications, network access, or other critical service.

 A flood prevents the essential network support staff from getting to the operations center.

The key to coping with such disasters is advance planning and preparation, identifying activities that

will keep a business viable when the computing technology is disabled. The steps in business

continuity planning are these:

 Assess the business impact of a crisis.

 Develop a strategy to control impact.

Develop and implement a plan for the strategy

Incident response plan:

Incident response Plan should be

 define what constitutes an incident

 identify who is responsible for taking charge of the situation

 describe the plan of action

Risk Analysis:

We distinguish a risk from other project events by looking for three things,

1. A loss associated with an event. The event must generate a negative effect: compromised security,

lost time, diminished quality, lost money, lost control, lost understanding, and so on. This loss is called

the risk impact.

2. The likelihood that the event will occur. The probability of occurrence associated with each risk is

measured from 0 (impossible) to 1 (certain). When the risk probability is 1, we say we have a

problem.

3. The degree to which we can change the outcome. We must determine what, if anything, we can do

to avoid the impact or at least reduce its effects. Risk control involves a set of actions to reduce or

eliminate the risk.

We usually want to weigh the pros and cons of different actions we can take to address each risk. To

that end, we can quantify the effects of a risk by multiplying the risk impact by the risk

probability, yielding the risk exposure. For example, if the likelihood of virus attack is

0.3 and the cost to clean up the affected files is $10,000, then the risk exposure is $3,000. So we can

use a calculation like this one to decide that a virus checker is worth an investment of

$100, since it will prevent a much larger potential loss. Clearly, risk probabilities can change over

time, so it is important to track them and plan for events accordingly.

Risk is inevitable in life: Crossing the street is risky but that does not keep us

from doing it. We can identify, limit, avoid, or transfer risk but we can seldom eliminate it. In

general, we have three strategies for dealing with risk:

1. Avoiding the risk, by changing requirements for security or other system characteristics

2. Transferring the risk, by allocating the risk to other systems, people, organizations, or assets;

or by buying insurance to cover any financial loss should the risk become a reality

3. Assuming the risk, by accepting it, controlling it with available resources, and preparing to deal

with the loss if it occurs

Thus, costs are associated not only with the risk's potential impact but also with reducing it. Risk

leverage is the difference in risk exposure divided by the cost of reducing the risk. In other words,

risk leverage is

The Nature of Risk:

In our everyday lives, we take risks. In crossing the road, eating oysters, or playing the lottery, we

take the chance that our actions may result in some negative result such as being

injured, getting sick, or losing money. Consciously or unconsciously, we weigh the benefits of taking

the action with the possible losses that might result. Just because there is a risk to a certain act we

do not necessarily avoid it; we may look both ways before crossing the street, but we do cross it.

In building and using computing systems, we must take a more organized and careful approach to

assessing our risks. Many of the systems we build and use can have a dramatic impact on life and

health if they fail. For this reason, risk analysis is an essential part of security planning.

We cannot guarantee that our systems will be risk free; that is why our security plans must address

actions needed should an unexpected risk become a problem. And some risks are simply part of

doing business; for example, as we have seen, we must plan for disaster recovery, even though we

take many steps to avoid disasters in the first place.

When we acknowledge that a significant problem cannot be prevented, we can use controls to reduce

the seriousness of a threat. For example, you can back up files on your computer as a defense

against the possible failure of a file storage device. But as our computing systems become more

complex and more distributed, complete risk analysis becomes more difficult and time consuming

and more essential.

Steps of a Risk Analysis:

Risk analysis is performed in many different contexts; for example, environmental and health risks are

analyzed for activities such as building dams, disposing of nuclear waste, or changing a

manufacturing process. Risk analysis for security is adapted from more general management

practices, placing special emphasis on the kinds of problems likely to arise from security issues.

By following well-defined steps, we can analyze the security risks in a computing system.

The basic steps of risk analysis are listed below.

1. Identify assets.

2. Determine vulnerabilities.

3. Estimate likelihood of exploitation.

4. Compute expected annual loss.

5. Survey applicable controls and their costs.

6. Project annual savings of control.

Arguments For and against risk analysis:

Risk analysis is a well-known planning tool, used often by auditors, accountants, and managers. In

many situations, such as obtaining approval for new drugs, new power plants, and new medical

devices, a risk analysis is required by law in many countries. There are many good reasons to

perform a risk analysis in preparation for creating a security plan.

 Improve awareness. Discussing issues of security can raise the general level of interest and

concern among developers and users. Especially when the user population has little expertise

in computing, the risk analysis can educate users about the role security plays in protecting

functions and data that are essential to user operations and products.

 Relate security mission to management objectives. Security is often perceived as a financial

drain for no gain. Management does not always see that security helps balance harm and
control costs.

 Identify assets, vulnerabilities, and controls. Some organizations are unaware of their

computing assets, their value to the organization, and the vulnerabilities associated

with those assets. A systematic analysis produces a comprehensive list of assets, valuations, and

risks.

 Improve basis for decisions. A security manager can present an argument such as "I think we

need a firewall here" or "I think we should use token-based authentication instead of

passwords." Risk analysis augments the manager's judgment as a basis for the decision.

Justify expenditures for security. Some security mechanisms appear to be very expensive

and without obvious benefit. A risk analysis can help identify instances where it is worth the

expense to implement a major security mechanism. Justification is often derived from

examining the much larger risks of not spending for security.

Organizational Security Policies:

A security policy is a high-level management document to inform all users of the goals of and

constraints on using a system. A policy document is written in broad enough terms that it

does not change frequently. The information security policy is the foundation upon which all

protection efforts are built. It should be a visible representation of priorities of the entire

organization, definitively stating underlying assumptions that drive security activities. The policy

should articulate senior management's decisions regarding security as well as asserting

management's commitment to security. To be effective, the policy must be understood by

everyone as the product of a directive from an authoritative and influential person at the top of

the organization.

Purpose:

Security policies are used for several purposes, including the following:

 recognizing sensitive information assets

 clarifying security responsibilities

 promoting awareness for existing employees

 guiding new employees

Audience:

A security policy addresses several different audiences with different expectations. That is, each

group users, owners, and beneficiaries uses the security policy in important but different ways.
Users

Users legitimately expect a certain degree of confidentiality, integrity, and continuous availability in

the computing resources provided to them. Although the degree varies with the situation, a

security policy should reaffirm a commitment to this requirement for service.

Users also need to know and appreciate what is considered acceptable use of their computers, data, and

programs. For users, a security policy should define acceptable use.
Owners

Each piece of computing equipment is owned by someone, and the owner may not be a system user.

An owner provides the equipment to users for a purpose, such as to further education, support

commerce, or enhance productivity. A security policy should also reflect the expectations and

needs of owners.

Beneficiaries

A business has paying customers or clients; they are beneficiaries of the products and services offered

by that business. At the same time, the general public may benefit in several ways: as a source of

employment or by provision of infrastructure.

Contents:

A security policy must identify its audiences: the beneficiaries, users, and owners. The policy should

describe the nature of each audience and their security goals. Several other sections are required,

including the purpose of the computing system, the resources needing protection, and the nature

of the protection to be supplied.

 Purpose

 Protected resources

 Nature of protection

Characteristics of a Good Security Policy:

If a security policy is written poorly, it cannot guide the developers and users in providing appropriate

security mechanisms to protect important assets. Certain characteristics make a security policy a

good one.

 Durability

 Realism

 Usefulness

Physical security

Physical security is the term used to describe protection needed outside the computer system. Typical

physical security controls include guards, locks, and fences to deter direct attacks. In addition,

there are other kinds of protection against less direct disasters, such as floods and power outages;

these, too, are part of physical security.

Natural Disasters:

It is impossible to prevent natural disasters, but through careful planning it is possible to reduce the

damage they inflict. Some measures can be taken to reduce their impact. Because many of these

perils cannot be prevented or predicted, controls focus on limiting possible damage and

recovering quickly from a disaster. Issues to be considered include the need for offsite backups,

the cost of replacing equipment, the speed with which equipment can be replaced, the need for

available computing power, and the cost or difficulty of replacing data and programs. Some of

them are

 Flood

 Fire

 Other natural disasters

Power loss:

Computers need their food electricity and they require a constant, pure supply of it. With a direct

power loss, all computation ceases immediately. Because of possible damage to media by sudden

loss of power, many disk drives monitor the power level and quickly retract the recording head if

power fails. For certain time-critical applications, loss of service from the

system is intolerable; in these cases, alternative complete power supplies must be instantly available.

Human vandals:

Because computers and their media are sensitive to a variety of disruptions, a vandal can destroy

hardware, software, and data. Human attackers may be disgruntled employees, bored operators,

saboteurs, people seeking excitement, or unwitting bumblers. If physical access is easy to obtain,

crude attacks using axes or bricks can be very effective. One man recently shot a computer that

he claimed had been in the shop for repairs many times without success. Physical attacks by

unskilled vandals are often easy to prevent; a guard can stop someone approaching a computer

installation with a threatening or dangerous object. When physical access is difficult, more subtle

attacks can be tried, resulting in quite serious damage. People with only some sophisticated

knowledge of a system can short-circuit a computer with a car key or disable a disk drive with a

paper clip. These items are not likely to attract attention until the attack is completed.

 Unauthorized access and use

 Theft

 Preventing access

 Preventing portability

 Detecting theft

Interception of Sensitive Information:

When disposing of a draft copy of a confidential report containing its sales strategies for the next five

years, a company wants to be especially sure that the report is not reconstructable by one of its

competitors. When the report exists only as hard copy, destroying the report is straightforward,

usually accomplished by shredding or burning. But when the report exists digitally, destruction is

more problematic. There may be many copies of the report in digital and paper form and in many

locations (including on the computer and on storage media).

There may also be copies in backups and archived in e-mail files. Here, we look at several ways to

dispose of sensitive information. They are

 Shredding

 Overwriting magnetic data

 Degaussing

 Protecting against Emanation

Contingency Planning:

The key to successful recovery is adequate preparation. Seldom does a crisis destroy irreplaceable

equipment; most computing systems personal computers to mainframes are standard, off-the-shelf

systems that can be easily replaced. Data and locally developed programs are more vulnerable

because they cannot be quickly substituted from another source. Let us look what to do after a

crisis occurs.

 Back-up

 Off-site backup

 Network storage

 Cold site

 Hot site

Physical security backup:

We have to protect the facility against many sorts of disasters, from weather to chemical spills and

vehicle crashes to explosions. It is impossible to predict what will occur or when. The physical

security manager has to consider all assets and a wide range of harm. Malicious humans seeking

physical access are a different category of threat agent. The primary physical controls are strength

and duplication. Strength means overlapping controls implementing a defense-in-depth approach

so that if one control fails, the next one will protect. People who built ancient castles practiced this

philosophy with moats, walls, drawbridges, and arrow slits. Duplication means eliminating single

points of failure. Redundant copies of data protect against harm to one copy from any cause.

Spare hardware components protect against failures.

EXERCISES

1. In what ways is denial of service (lack of availability for authorized users) a vulnerability to

users of single-user personal computers?

2. List three factors that should be considered when developing a security plan.

3. Cite three controls that could have both positive and negative effects.

4. List three different sources of water to a computing system, and state a control for each.

5. Cite a risk in computing for which it is impossible or infeasible to develop a classical

probability of occurrence.

6. Investigate the computer security policy for your university or employer. Who wrote the

policy? Who enforces the policy? Who does it cover? What resources does it cover?

7. For an airline, what are its most important assets? What are the minimal computing resources

it would need to continue business for a limited period (up to two days)? What other systems

or processes could it use during the period of the disaster?

8. Investigate your university's or employer's security plan to determine whether its security

requirements meet all the conditions listed in this chapter. List any that do not. When was

the plan written? When was it last reviewed and updated?

In this Chapter

 Program and data protection by patents, copyrights, and trademarks

 Computer crime

 Privacy

 Ethical analysis of computer security situations

LEGAL, PRIVACY, AND ETHIAL ISSUES IN COMPUTER SECURITY

Protecting Programs And Data

Copyrights, patents, and trade secrets are legal devices that can protect computers, programs and data.

Here how each of these forms are originally designed to be used and how each is currently used in

computing are described.

Copyrights: Copyrights are designed to protect the expression of ideas. Thus it is applicable to a

creative work, such as story, photographs, song or pencil sketch. The right to copy an expression

of an idea is protected by copyright. The idea of copyright is to allow regular and free exchange of

ideas. Copyright gives the author the exclusive right to make copies of the expression and sell

them in public. That is, only the author can sell the copies of the author’s book.

Patents:

Patents are unlike copyrights in that they protect inventions, tangible objects, or ways to make them,

not works of the mind. The distinction between patents and copyrights is that patents were

intended to apply to the results of science, technology, and engineering, where as copyrights are

meant to cover works in the arts, literature, and written in the scholarship. A Patent is designed to

protect the device or process for carrying out an idea itself.

Trade Secrets:

A trade secret is unlike a patent and copyright in that it must kept secret. The information has value

only as secret, and an infringer is one who divulges the secret. Once divulged, the information

usually cannot be made secret. A trade secret is information that gives one company a competitive

edge over others. For example the formula of a soft drink is a trade secret, as is a mailing list of

customer or information about a product due to be announced in a few months.

Computer Crime:

Crimes involving computers are an area of the law that is even less clear than the other areas.

Computer crime consider why new laws are needed to address some of its problems.

Issues in computer crime are

 Rules of property

 Rules of evidence

 Threats to integrity and confidentiality

 Value of data

 Acceptance of computer terminology

Why Computer crime is hard to define?

Some people in the legal process do not understand computers and computing, so crimes involving

computers are not always treated properly. Main reasons are

1. Lack of understanding

2. Lack of physical evidence

3. Lack of recognition assets

4. Lack of political impacts

5. Complexity of case

6. Juveniles

Privacy:

In particular, we want to investigate the privacy of sensitive data about the user. The user should be

protected against the system’s misuse of the private data and the system’s failure to protect its

user’s private data against outside attack and disclosure. This is termed as privacy in computer

ethics.

Ethical Issues In Computer Security:

The primary purpose of this section is to explore some of ethical issues associated with computer

security and to show how ethics functions as a control.

Difference between Law and Ethics:

Law Ethics

Described by formal, written documents Described by unwritten principles

Interpreted by courts Interpreted by each individual

Established by legislature representing all
people

Presented by philosophers, religions,
professional groups

Applicable to everyone Personal choice

Priority determined by courts if two laws
conflict

Priority determined by an individual if two
principles conflict

Court final arbiter of “right” No external arbiter

Enforceable by police and court Limited enforcement

Studying Ethics:

The study of ethics is not so easy because the issues are complex. Sometimes people

confuse between ethics and religion because many religions provide a framework in

which to make ethical choices. Here some of the problems and how understanding

of ethics can deal with issues of computer security is explained.

 Ethics and religion

 Ethical principles are not universal\Ethics does not provide answers

Solutions to the

issues:

1. Ethical reasoning

2. Examining the case for ethical issues

Here some steps are used to make ethical choices justifiable. Those are

I. Understanding the situation

II. Know several theories of ethical reasoning

III. List the ethical principles involved

IV. Determine which principles outweigh others

Examples of

ethical principle:

1. Consequence based principles

2. Rule

based principles

Taxonomy o

Ethical theories:

 Consequence based Rule based

Individual Based on consequences to
individual

Based on rules acquired by
the individual from
religion experience,
analysis

Universal Based on consequences to
all of society

Based on universal rules,
evident to everyone

